morphologies and phase transitions in precessing black
play

Morphologies and phase transitions in precessing black-hole binaries - PowerPoint PPT Presentation

Morphologies and phase transitions in precessing black-hole binaries U. Sperhake DAMTP , University of Cambridge M. Kesden, D. Gerosa, R. OShaughnessy, E. Berti Phys. Rev. Lett. 114 (2015) 081103 + work in preparation Iberian


  1. Morphologies and phase transitions in precessing black-hole binaries U. Sperhake DAMTP , University of Cambridge M. Kesden, D. Gerosa, R. O’Shaughnessy, E. Berti Phys. Rev. Lett. 114 (2015) 081103 + work in preparation Iberian Gravitational-Wave Meeting 2015 Barcelona, 14 th May 2015 U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 1 / 32

  2. Overview Introduction Time scales The precessional time scale Evolutions on t RR Conclusions U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 2 / 32

  3. 1. Introduction U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 3 / 32

  4. The 2-body problem Newtonian Point masses Kepler orbits General Relativity Dissipative ⇒ GWs Black holes Spins ⇒ Additional parameters GW observations: LIGO, VIRGO,... U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 4 / 32

  5. Spin precessing BH binaries Inspiral due to GW emission Precession of spins S 1 , S 2 , orbital angular momentum L Orbital motion U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 5 / 32

  6. 2. Time scales U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 6 / 32

  7. Time scales Adiabatic inspiral at 2 . 5 PN; spin-spin coupling at 2 PN order Zero eccentricity Timescales Radiation reaction: t RR ∼ r 4 Precession: t pre ∼ r 5 / 2 Orbital motion: t orb ∼ r 3 / 2 t orb ≪ t pre ≪ t RR Usual PN dynamics: orbit averaged t orb ≪ t ≪ t pre Here: precession averaged t pre ≪ t ≪ t RR U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 7 / 32

  8. 3. The precessional time scale U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 8 / 32

  9. Parametrizing BBHs Zero eccentricity ⇒ 9 parameters: S 1 , S 2 , L Align z axis (e.g. with L or J ) → 7 Rotation about z axis → 6 S 1 , S 2 conserved → 4 L ∼ r 1 / 2 is a measure for the separation, i.e. time → 3 U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 9 / 32

  10. Option 1: Orientation of spin vectors θ 1 , 2 = ∠ ( S 1 , 2 , L ) ∆ φ = ∠ ( S 1 , ⊥ , S 2 , ⊥ ) Advantage: Easy to visualize Drawback: All vary on t pre Conserved or averaged variables better! U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 10 / 32

  11. Option 2: Variables adapted to timescales J = | J | θ L = ∠ ( L , J ) ϕ ′ = rotation of S 1 , S 2 around S Replace θ L with S J const on t pre S , ϕ ′ vary on t pre U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 11 / 32

  12. Constant of motion Note: S , ϕ ′ , J completely determine the binary evolution on t pre : L = L ( S , ϕ ′ ; J , S 1 , S 2 , L ) , S 1 , 2 = S 1 , 2 ( S , ϕ ′ ; J , S 1 , S 2 , L ) At 2 PN spin-precession, 2.5 PN Radiation Reaction: { ( J 2 − L 2 − S 2 )[ S 2 ( 1 + q 2 ) − ( S 2 ξ ( S , ϕ ′ ) 1 − S 2 2 )( 1 − q 2 )] = − ( 1 − q 2 ) A 1 A 2 A 3 A 4 cos ϕ ′ } / ( 4 qM 2 S 2 L ) A i = A i ( J , L , S , S 1 , S 2 ) ≥ 0 conserved: projected effective spin ⇒ trade ϕ ′ for ξ Constraint on ( S , ϕ ′ ) U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 12 / 32

  13. Summary on t pre Choose binary parameters S 1 , S 2 , ξ, q , M Fix J of the binary Fix its separation r by specifying L ⇒ On the precession timescale t pre , its evolution is a 1-parameter evolution in S U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 13 / 32

  14. Physically allowed parameter ranges I | cos ϕ ′ | ≤ 1 Recall { ( J 2 − L 2 − S 2 )[ S 2 ( 1 + q 2 ) − ( S 2 ξ ( S , ϕ ′ ) 1 − S 2 2 )( 1 − q 2 )] = − ( 1 − q 2 ) A 1 A 2 A 3 A 4 cos ϕ ′ } / ( 4 qM 2 S 2 L ) Then ξ − ≤ ξ ≤ ξ + with { ( J 2 − L 2 − S 2 )[ S 2 ( 1 + q 2 ) − ( S 2 1 − S 2 2 )( 1 − q 2 )] ξ ± ( S ) = ± ( 1 − q 2 ) A 1 A 2 A 3 A 4 } / ( 4 qM 2 S 2 L ) ϕ ′ = 0 or ϕ ′ = π Note: ξ ( S , ϕ ′ ) = ξ ± ( S ) ⇒ ⇒ L , S 1 , S 2 co-planar U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 14 / 32

  15. Phycially allowed parameter ranges II S min ≤ S ≤ S max , where � � S min = max | J − L | , | S 1 − S 2 | , � � S max = min J + L , S 1 + S 2 S = S min or S = S max ⇒ . . . ⇒ one A i = 0 ⇒ ξ = ξ − = ξ + For any other value of S : all A i > 0 ξ − ( S ) ≤ ξ ( S , ϕ ′ ) ≤ ξ + ( S ) as cos ϕ ′ varies from + 1 to − 1 ⇒ ⇒ Closed loop in ( S , ξ ) plane: allowed configs. inside U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 15 / 32

  16. Effective potential diagram Note: ϕ ′ = 0 on ξ − ; ϕ ′ = π on ξ + U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 16 / 32

  17. The precession cycle Now consider a binary with fixed ξ : As S varies, binary moves on horizontal line in ( S , ξ ) plane Turning points: ξ ( S ) = ξ ± ⇒ . . . ⇒ there are 2 solutions for S : S − , S + Binary precession quantified by evolution of S ∈ [ S − , S + ] U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 17 / 32

  18. The precession cycle What about ϕ ′ during a precession cycle? 1) Both turning points on ξ + ⇒ cos ϕ ′ = − 1 ⇒ ϕ ′ = π ϕ ′ oscillates around π but never reaches 0 ⇒ 2) Both turning points on ξ − ⇒ cos ϕ ′ = + 1 ⇒ ϕ ′ = 0 ϕ ′ oscillates around 0 but never reaches π ⇒ 3) One turning point on ξ − , the other on ξ + ϕ ′ circulates all the way from 0 to π and back ⇒ U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 18 / 32

  19. The precession cycle U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 19 / 32

  20. Summary We now have 3 morphologies! Where do they meet? Answer: When S ± = S min or S max Note: At ξ max , ξ min we have S = const Schnittmann’s (2004) spin-orbit resonances Note: What about q → 1 ? Then ξ + ( S ) = ξ − ( S ) ⇒ S fixed by prescribing ξ “Egg” squashed to “line” U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 20 / 32

  21. Switching coordinates: ( J , S , ξ ) ↔ ( θ 1 , θ 2 , ∆Φ) One straightforwardly shows (cosine theorem): � J 2 − L 2 − S 2 − 22 qM 2 ξ 1 � cos θ 1 = , 2 ( 1 − q ) S 1 L 1 + q − J 2 − L 2 − S 2 + 22 M 2 ξ � � q cos θ 2 = , 2 ( 1 − q ) S 2 L 1 + q S 2 − S 2 1 − S 2 2 cos θ 12 = , 2 S 1 S 2 cos θ 12 − cos θ 1 cos θ 2 cos ∆Φ = , sin θ 1 sin θ 2 U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 21 / 32

  22. 3 morphologies for ∆Φ Recall: ϕ ′ = 0 or ϕ ′ = π sin ϕ ′ = 0 ⇒ ⇒ L , S 1 , S 2 co-planar sin ∆Φ ′ = 0 ⇒ ⇒ ∆Φ = 0 or ∆Φ = π 3 morphologies in ∆Φ : 1) ∆Φ librates around π 2) ∆Φ librates around 0 3) ∆Φ circulates in [ 0 , π ] Warning: Although sin ϕ ′ = 0 ⇔ sin ∆Φ = 0, ϕ ′ = 0 or π and ∆Φ = 0 or π is NOT determined!! U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 22 / 32

  23. Morphology diagrams Depending on BH parameters, not all morphologies may be available U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 23 / 32

  24. When do morphologies change? Clearly, ∆Φ must change on the ξ ± loop! We know: ϕ ′ = 0 or π on loop ⇒ ∆Φ = 0 or π on loop cos ∆Φ = cos θ 12 − cos θ 1 cos θ 2 ⇒ = ± 1 on loop sin θ 1 sin θ 2 Discontinuous change only possible if sin θ 1 = 0 or sin θ 2 = 0 ⇒ one BH spin aligned with L U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 24 / 32

  25. 4. Evolutions on t RR U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 25 / 32

  26. Traditional orbit averaged PN evolutions Valid for times t ≈ t orb ≪ t pre Ignore precession: L ( t ) , S 1 ( t ) , S 2 ( t ) held fixed � 2 π � d J � = 1 d J d ψ Then we have: d ψ/ dt dt T dt 0 Here: T = orbital period ψ = e.g. Kepler’s true anomaly Then handle precession as a quasi-adiabatic process... U. Sperhake (DAMTP, University of Cambridge) Morphologies and phase transitions in precessing black-hole binaries 14/05/2015 26 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend