morphological optimization of prosthesis finger for
play

Morphological optimization of prosthesis finger for precision - PowerPoint PPT Presentation

Introduction Modeling of the robotic hand prosthesis finger Finger prototype test platform set-up Morphology optimization Results Conclusions and Perspectives Morphological optimization of prosthesis finger for precision grasping of


  1. Introduction Modeling of the robotic hand prosthesis’ finger Finger prototype test platform set-up Morphology optimization Results Conclusions and Perspectives Morphological optimization of prosthesis’ finger for precision grasping of little objects J. L. Ramírez 1 , A. Rubiano 1 , N. Jouandeau 2 L. Gallimard 1 , O. Polit 1 1 LEME Université Paris Ouest Nanterre La Défense, France { jl.ramirez_arias, astrid.rubiano, laurent.gallimard, olivier.polit } @u-paris10.fr 2 LIASD, Université Paris 8, France n@ai.univ-paris8.fr July 2015 1/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  2. Introduction Modeling of the robotic hand prosthesis’ finger Finger prototype test platform set-up Morphology optimization Results Conclusions and Perspectives Plan 1 Introduction 2 Modeling of the robotic hand prosthesis’ finger Description of the robotic hand prosthesis’ finger Kinematic model Dynamic model 3 Finger prototype test platform set-up Materials and methods Kinematic tracking and force measure 4 Morphology optimization Evolution process Evaluation process Experiment 5 Results 6 Conclusions and Perspectives 2/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  3. Introduction Modeling of the robotic hand prosthesis’ finger Finger prototype test platform set-up Morphology optimization Results Conclusions and Perspectives Soft Robotics Classical Robots Rigid structures Soft Robots [Nurzaman et al., 2013] Elastic and deformable bodies Unconventional materials [Andrianesis and Tzes, 2013] Improve interactions with the environment UB-HAND IV [Palli et al., 2012; Ficuciello et al., 2014] Pisa-IIT Soft Hand [Ajoudani et al., 2013] 3/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  4. Introduction Modeling of the robotic hand prosthesis’ finger Finger prototype test platform set-up Morphology optimization Results Conclusions and Perspectives Robot Features Tendon driven mechanisms Flexible links Smooth joints Morphological analysis [Jouandeau and Hugel 2013-2014] To reach better synergies between movement primitives and limbs lengths Applied to NAO humanoids To validate parts dimension on real To design primitives in simulation 4/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  5. Introduction Modeling of the robotic hand prosthesis’ finger Description of the robotic hand prosthesis’ finger Finger prototype test platform set-up Kinematic model Morphology optimization Dynamic model Results Conclusions and Perspectives Tendon-driven finger composed of three joints: Metacarpophalangeal (MP or MCP) - θ 33 Proximal interphalangeal (PIP) - θ 35 Distal interphalangeal (DIP) - θ 36 Under-actuated ⇒ one servo motor ⇒ angle joints relations: θ 35 = 0 . 23 θ 33 θ 36 = 0 . 72 θ 33 Fastening point Flexion - Extension DIP Extension tendon PIP Pulley Flexion tendon Servo Motor Fastening point MP Up - Down 5/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  6. Introduction Modeling of the robotic hand prosthesis’ finger Description of the robotic hand prosthesis’ finger Finger prototype test platform set-up Kinematic model Morphology optimization Dynamic model Results Conclusions and Perspectives Denhavit-Hartenberg - Khalil and Kleinfinger (DHKK) 𝒚 𝒈 Link α i a i d i θ i 𝒜 𝒈 33 − π / 2 0 0 θ 33 𝒎 𝟒𝟓 𝜾 𝟒𝟕 34 π / 2 0 0 θ 34 𝒚 𝟒𝟕 𝒜 𝟒𝟕 𝒛 𝒈 35 − π / 2 l 32 0 θ 35 𝒚 𝟒𝟔 𝜾 𝟒𝟔 36 0 l 33 0 θ 36 𝒛 𝟒𝟕 𝒎 𝟒𝟒 𝒜 𝟒𝟔 f 0 l 34 0 0 𝒚 𝟒𝟓 𝒛 𝟒𝟔 𝒚 𝟒𝟒 𝒎 𝟒𝟑 𝜾 𝟒𝟒 � � n 0 R n 0 P n 𝜾 𝟒𝟓 0 T n = i − 1 T i = ∏ 𝒛 𝟒𝟒 𝒜 𝟒𝟓 0 0 0 1 𝒜 𝟒𝟒 i = 1 𝒛 𝟒𝟓 6/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  7. Introduction Modeling of the robotic hand prosthesis’ finger Description of the robotic hand prosthesis’ finger Finger prototype test platform set-up Kinematic model Morphology optimization Dynamic model Results Conclusions and Perspectives Virtual displacements and virtual works Virt. Disp. of q Virt. Works Forces Q T δ W e = δ r e e M ¨ q T δ W i = δ r i 𝜾 𝟒𝟕 𝜾 𝟒𝟔 𝒚 𝟒𝟕 𝒚 𝟒𝟔 ⇓ 𝒚 𝟒𝟒 𝒙 𝟒𝟓 Dynamic equilibrium 𝒙 𝟒𝟒 𝜾 𝟒𝟒 𝒛 𝟒𝟕 𝒛 𝟒𝟔 𝒈 𝑺 δ q T [ M ¨ q − Q e ] = 0 𝒛 𝟒𝟒 𝒙 𝟒𝟑 ⇓ Input torque τ 33 ( f R , q , ˙ q , ¨ q ) 7/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  8. Introduction Modeling of the robotic hand prosthesis’ finger Finger prototype test platform set-up Materials and methods Morphology optimization Kinematic tracking and force measure Results Conclusions and Perspectives The experiments seek to: Track the kinematics = ⇒ CCD camera Prosilica GE-2040 1 Measure fingertip force = ⇒ Flexiforce � Sensor 2 Evaluate tendon driven dynamic = ⇒ Using different motors 3 (classical and serial actuactors, from 2 . 3Kg-cm to 101Kg-cm, from Traxxas to Dynamixel) Interchangeable Actuator Adjustable finger position 8/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  9. Introduction Modeling of the robotic hand prosthesis’ finger Finger prototype test platform set-up Materials and methods Morphology optimization Kinematic tracking and force measure Results Conclusions and Perspectives Finger position overshoots The 0 P x f vector shows perturbations after contact Sample experiment with Traxxas actuator (2 . 3Kg-cm): The lengths of the finger could: Increase the amount of torque needed Impact the precision of the grasping 9/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  10. Introduction Modeling of the robotic hand prosthesis’ finger Evolution process Finger prototype test platform set-up Evaluation process Morphology optimization Experiment Results Conclusions and Perspectives ⇒ Reach a constant f R of 5N Find ⇐ Min position error Optimal finger’s phalanges lengths Min input torque τ 33 Morphological Optimization Evolution process based on an heuristic evaluation Simulation of Kinematic of our finger Simulation of Dynamics of our finger 10/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  11. Introduction Modeling of the robotic hand prosthesis’ finger Evolution process Finger prototype test platform set-up Evaluation process Morphology optimization Experiment Results Conclusions and Perspectives Motors, Torques < M , T > and lengths new as parameter values Algorithm 1 evolution < M , T > ( n , H , eval ) 1: ( H , L ) ← ( / 0 , / 0 ); 2: for i = 0 to n do 3: lengths new ← newParam < M , T > ( H ); 4: ( d , m ) ← move ( lengths new , q initial , q obj , U , dt ); 5: score ← eval ( d , m ); 6: if score == ACCEPT then 7: insert (( lengths new , score ), L ); 8: end if 9: insert (( lengths new , score ), H ); 10: end for 11: return best ( L ); 11/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  12. Introduction Modeling of the robotic hand prosthesis’ finger Evolution process Finger prototype test platform set-up Evaluation process Morphology optimization Experiment Results Conclusions and Perspectives Evaluation of positioning error d and input torque m ( i.e. τ 33 ) Algorithm 2 eval ( d , m ) 1: if d < d best then 2: ( d best , m best ) ← ( d , m ); 3: return ACCEPT ; 4: else if m ≥ 0 then 5: if m < m best then 6: ( d best , m best ) ← ( d , m ); 7: return ACCEPT ; 8: end if 9: end if 10: return REJECT ; 12/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  13. Introduction Modeling of the robotic hand prosthesis’ finger Evolution process Finger prototype test platform set-up Evaluation process Morphology optimization Experiment Results Conclusions and Perspectives Algorithm 3 kinematicMove ( lengths new , q initial , q obj , U , dt ) 1: q ← q initial ; 2: t ← 0; 3: while contact ( q ) == false do ( u , t ) ← next ( U , t , dt ); 4: q ← f ( lengths new , q , u , dt ); 5: 6: end while 7: return ( dist ( q , q obj ), − 1); 13/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

  14. Introduction Modeling of the robotic hand prosthesis’ finger Evolution process Finger prototype test platform set-up Evaluation process Morphology optimization Experiment Results Conclusions and Perspectives Algorithm 4 DynamicMove ( lengths new , x initial , q obj , f R , U , dt ) 1: q ← position ( x initial ); 2: x ← x initial ; 3: t ← 0; 4: while contact ( q ) == false do 5: ( u , t ) ← next ( U , t , dt ); 6: x ← g ( lengths new , x , u , dt ); 7: q ← position ( x ); 8: end while 9: while torque ( x ) < f R do 10: ( u , t ) ← next ( U , t , dt ); 11: x ← g ( lengths new , x , u , dt ); 12: end while 13: return ( dist ( q , q obj ), u ); 14/18 Nicolas Jouandeau Morphological optimization of prosthesis’ finger

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend