monodromies revisited with twisted homology and bcj
play

Monodromies revisited with twisted homology and BCJ Piotr Tourkine, - PowerPoint PPT Presentation

Monodromies revisited with twisted homology and BCJ Piotr Tourkine, CNRS & LPTHE, Sorbonne Universits QCD meets Gravity V, dec 2019, UCLA, Mani L. Bhaumik Institute for Theoretical Physics [arXiv:1910.08514] [Work in progress] +


  1. Monodromies revisited with twisted homology and BCJ Piotr Tourkine, CNRS & LPTHE, Sorbonne Universités QCD meets Gravity V, dec 2019, UCLA, Mani L. Bhaumik Institute for Theoretical Physics [arXiv:1910.08514] [Work in progress] + Monodromy relations from twisted homology E. Casali, S. Mizera, P. Tourkine E. Casali, S. Mizera, P. Tourkine [arXiv:1608.01665] Phys.Rev.Lett. 117 (2016) 211601 Higher-loop amplitude monodromy relations in string and gauge theory P. Tourkine, P. Vanhove [arXiv:1707.05775] JHEP 1710 (2017) 105 One-loop monodromy relations on single cuts A. Ochirov, P. Tourkine, P. Vanhove 1

  2. previously Set of linear relationship between open string theory loop integrands [arXiv:1608.01665] Phys.Rev.Lett. 117 (2016) 211601 Higher-loop amplitude monodromy relations in string and gauge theory α n P. Tourkine, P. Vanhove d 1 1 − α n z n 1 d − n [arXiv:1702.04963] Nucl.Phys. B925 (2017) 63-134 1 z − n Monodromy Relations in Higher-Loop String Amplitudes 2 d − α 4 n S. Hohenegger, S. Stieberger d 4 3 α z 4 d 3 [arXiv:1707.05775] JHEP 1710 (2017) 105 A 0 A B z 3 1 0 ( 1 1 c � b 1 ( 1 ) b ) One-loop monodromy relations on single cuts 1 a r 1 � C A + 0 1 1 1 0 d 1 − 2 β A. Ochirov, P. Tourkine, P. Vanhove a + 2 β 2 z 1 A 1 0 i β ( d b 1 ) i d a r 1 � 1 0 B i α 1 α r + 0 1 r ˜ ( 1 b ) ( 1 b i ) C � r + 0 1 1 C A + [arXiv:1910.08514] 0 0 1 + c d 1 B r i 0 � Monodromy relations from twisted homology α 1 r ˜ i − 1 + 1 ( b i ) r E. Casali, S. Mizera, P. Tourkine + i 1 C + c � i A 0 α A 0 0 i ˜ r i i a + i β i + 1 ( b i ) 1 β g B a � d i g 2 A 0 ( b i ) g ( b g ) r + i 1 1 B g ( c + A b g ) 0 0 i r i + g 1 d 1 c � g A 0 c + B ( g Q ( b g b g ) a + ) g g 1 g r + g 1 A 0 0 A g 0 0 g 2

  3. now Will dissect the relations in field theory 3

  4. motivations 4

  5. motivations • string theoretic formalisms can often teach us a lot about generic properties of perturbative QFT • because the worldsheet is nicer than the worldline (true as well for CHY) • and because of non-pertubative physics + dualities + supersymmetry (but susy also on worldline, see Green Bjornsson) 5

  6. motivations • The KLT relations between open (=gauge) and closed (=gravity) strings is somehow at the roots of this conference. open open closed = × • Looking at the monodromies, we will try to draw some conclusions concerning two related and interconnected questions • the “labeling problem” (BCJ around the loop) • some more speculative aspects on the double copy 6

  7. BCJ around the clock 2 3 4 1 7

  8. BCJ around the clock - = n t n u n s 8

  9. BCJ around the clock • Do successive BCJ moves around the loop. • First and last diagrams do not match: there is a loop momentum shifting ambiguity . • Generalises to higher loops 9

  10. BCJ around the clock • Do successive BCJ moves around the loop. • First and last diagrams do not match: there is a loop momentum shifting ambiguity . • Generalises to higher loops 10

  11. BCJ around the clock • Do successive BCJ moves around the loop. • First and last diagrams do not match: there is a loop momentum shifting ambiguity . • Generalises to higher loops 11

  12. Double-copy • works amazingly well • up to 4 loops • 5 loops : needs to be modified. Why ? [arXiv:1708.06807] Phys.Rev. D96 (2017) 126012 Five-loop four-point integrand of N =8 supergravity as a generalized double copy Z. Bern, J. J. M. Carrasco, W. Chen, H. Johansson, R. Roiban, M. Zeng 12

  13. • In this talk, we will see how much we can extract from the monodromy relations and twisted homology to attack these two questions • Will require a closer look at the field theory limit of the monodromy relations 13

  14. Outline • Loop momentum in string theory • Monodromy relations • Tree-level : sum and di ff erence • Loop-level : same 14

  15. The field theory limit • One topology in string theory (genus = number of loops) descends to all possible graphs in the field theory limit • Scherk 70’s : tree-level • Bern-Kosower string based rules 90’s : one-loop 15

  16. The loop momentum in string theory • String theory has a uniform definition of the loop momentum P μ = ∂ t X μ ℓ μ = ∮ ∂ t X μ d σ • zero-mode of momentum field : • Descends to all the topologies of graphs generated in the field theory limit. Example : 16

  17. field theory limit of the monodromy relations 17

  18. warm-up : tree-level α n − 1 α n α 4 C − α 3 z n − 1 z 4 z n d 2 d 3 d 4 d n − 2 d n − 1 d 1 d 1 z 2 z 3 C + 18

  19. warm-up : tree-level z 1 1 0 ∞ z 2 z 3 z 4 e i πα ′ � s A ( s , u ) + A ( s , t ) + e − i πα ′ � t A ( t , u ) = 0 e − i πα ′ � s A ( s , u ) + A ( s , t ) + e + i πα ′ � t A ( t , u ) = 0 valid for complex kinematics so not quite just complex conjugation 19

  20. warm-up : tree-level e i πα ′ � s A ( s , u ) + A ( s , t ) + e − i πα ′ � t A ( t , u ) = 0 e − i πα ′ � s A ( s , u ) + A ( s , t ) + e + i πα ′ � t A ( t , u ) = 0 Sum and di ff erence gives cosines and sines : A ( s , u ) = sin( α ′ � π t ) sin( α ′ � π s ) A ( t , u ) cos( πα ′ � s ) A ( s , u ) + A ( s , t ) + cos( πα ′ � t ) A ( t , u ) = 0 20

  21. warm-up : tree-level e i πα ′ � s A ( s , u ) + A ( s , t ) + e − i πα ′ � t A ( t , u ) = 0 e − i πα ′ � s A ( s , u ) + A ( s , t ) + e + i πα ′ � t A ( t , u ) = 0 As , one is left with α ′ � → 0 A ( s , u ) + A ( s , t ) + A ( t , u ) = 0 sA ( s , u ) + tA ( t , u ) = 0 21

  22. loop-level • generic mechanism • boundary e ff ects 22

  23. One-loop A 00 A 0 z m a − a + b 1 d m − 1 b 1 β C + z m +1 z m +1 z m − 1 C − b 2 d m − 2 b 2 α m − 1 z m +2 z m +2 z m − 2 α m − 2 α m +1 B B α m +2 α 3 z n − 1 z n − 1 z 3 α n − 1 b n − m d 2 b n − m α 2 z n z n α n z 2 d 1 b n − m +1 b n − m +1 c − c + A 0 A 00 z m 23

  24. One-loop A 00 A 0 z m a − a + b 1 d m − 1 b 1 β C + z m +1 z m +1 z m − 1 C − b 2 d m − 2 b 2 α m − 1 z m +2 z m +2 z m − 2 α m − 2 α m +1 B B α m +2 α 3 z n − 1 z n − 1 z 3 α n − 1 b n − m d 2 b n − m α 2 z n z n α n z 2 d 1 b n − m +1 b n − m +1 c − c + A 0 A 00 z m 24

  25. Loop monodromies 4 3 2 25

  26. Loop monodromies e i πα ′ � k 1 ⋅ ( k 2 + k 3 ) 4 1 4 3 2 e i πα ′ � k 1 ⋅ ℓ 3 3 3 4 1 4 1 2 2 e i πα ′ � k 1 ⋅ k 2 2 3 2 4 1 26

  27. 4 1 3 2 1 4 4 3 2 3 3 3 4 1 4 2 1 2 2 1 3 2 4 4 1 3 2 27

  28. Relations I (1234) + e i πα ′ � k 1 ⋅ k 2 I (2134) + e i πα ′ � k 1 ⋅ ( k 2 + k 3 ) I (2314) − e i πα ′ � k 1 ⋅ ℓ I (234 | 1) + J up − J down = 0 Sum and di ff erence, plus field theory limit gives KK and fundamental BCJ Let’s look at the ’s in the formula above I 28

  29. I (1234) + e i πα ′ � k 1 ⋅ k 2 I (2134) + e i πα ′ � k 1 ⋅ ( k 2 + k 3 ) I (2314) − e i πα ′ � k 1 ⋅ ℓ I (234 | 1) 29

  30. I (1234) + e i πα ′ � k 1 ⋅ k 2 I (2134) + e i πα ′ � k 1 ⋅ ( k 2 + k 3 ) I (2314) − e i πα ′ � k 1 ⋅ ℓ I (234 | 1) 2 3 1 3 3 1 + ( ℓ + k 2 ) · k 1 + ( ℓ + k 23 ) · k 1 ℓ · k 1 � 1 4 2 4 2 4 30

  31. 2 3 1 3 3 1 + ( ℓ + k 2 ) · k 1 + ( ℓ + k 23 ) · k 1 ℓ · k 1 � 1 4 2 4 2 4 2 � · k 1 = ( � + k 1 ) 2 − � 2 2 ( � + k 2 ) · k 1 = ( � + k 1 + k 2 ) 2 − ( � + k 2 ) 2 2 ( � + k 2 + k 3 ) · k 1 = ( � + k 1 + k 2 + k 3 ) 2 − ( � + k 2 + k 3 ) 2 31

  32. - 2 3 1 + 3 3 1 + + + + - - 1 4 2 4 2 4 � 2 � · k 1 = ( � + k 1 ) 2 − � 2 2 ( � + k 2 ) · k 1 = ( � + k 1 + k 2 ) 2 − ( � + k 2 ) 2 2 ( � + k 2 + k 3 ) · k 1 = ( � + k 1 + k 2 + k 3 ) 2 − ( � + k 2 + k 3 ) 2 32

  33. • The graphs that appear in the monodromy relations are grouped by BCJ triplets. [arXiv:1608.01665] Phys.Rev.Lett. 117 (2016) 211601 Higher-loop amplitude monodromy relations in string and gauge theory P. Tourkine, P. Vanhove [arXiv:1707.05775] JHEP 1710 (2017) 105 One-loop monodromy relations on single cuts A. Ochirov, P. Tourkine, P. Vanhove • What happens at the boundary ? 33

  34. I (1234) + e i πα ′ � k 1 ⋅ k 2 I (2134) + e i πα ′ � k 1 ⋅ ( k 2 + k 3 ) I (2314) − e i πα ′ � k 1 ⋅ ℓ I (234 | 1) + J up − J down = 0 Now let’s look at the J’s 34

  35. Now let’s look at the J’s [arXiv:1707.05775] JHEP 1710 (2017) 105 One-loop monodromy relations on single cuts A. Ochirov, P. Tourkine, P. Vanhove 35

  36. “Triangles” 2 + + . . . 2 2 1 n − 1 n − 1 n 1 n 1 n − 1 n • Bern-Kosower rules (90’s) : explain which integrands generate these triangles when z 1 → z n 36

  37. Now let’s look at the J’s [arXiv:1707.05775] JHEP 1710 (2017) 105 One-loop monodromy relations on single cuts A. Ochirov, P. Tourkine, P. Vanhove New graphs : “ exotic triangles” [work in progress] z 1 z m = it z m = it z 1 ` ` m 1 m 1 37

  38. 4 3 2 <div style: pen and paper> 38

  39. 39

  40. 40

  41. 41

  42. 42

  43. 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend