modular matrix models monstrous moonshine
play

Modular Matrix Models & Monstrous Moonshine: Yang-Hui He Dept. - PowerPoint PPT Presentation

Modular Matrix Models & Monstrous Moonshine: Yang-Hui He Dept. of Physics and Math/Physics RG, Univ. of Pennsylvannia hep-th/0306092, In Collaboration with: Vishnu Jejjala Feb, 2004, Madison, Wisconsin Modular Matrix Models and Monstrous


  1. Modular Matrix Models & Monstrous Moonshine: Yang-Hui He Dept. of Physics and Math/Physics RG, Univ. of Pennsylvannia hep-th/0306092, In Collaboration with: Vishnu Jejjala Feb, 2004, Madison, Wisconsin

  2. Modular Matrix Models and Monstrous Moonshine Motivations MATRIX MODELS • Resurrection of old matrix models; • Dijkgraaf-Vafa Correspondence; • Powerful unified view of SUSY gauge theory/2D qauntum gravity/geometry; • Geometrisation and discretisation of string theory;

  3. MOONSHINE • One of the most amazing “coincidences” in mathematics; • McKay-Thompson: Relation of elliptic j -function and the Monster Group; • Conway-Norton: (crazy) Moonshine conjecture; • Frenkel-Lepowski-Meurman: Vertex Algebras; • Borcherds: Proof (Fields Medal 98); QUANTUM/STRINGY MOONSHINE??? • Does moonshine mean anything to String Theory? • Dixon-Ginsparg-Harvey; Craps-Gaberdiel-Harvey • Is there a quantum generalisation of moonshine?

  4. Outline Four Short Pieces 1. The Klein Invariant j -function 2. The One-Matrix Model 3. The Master Field Formalism 4. Dijkgraaf-Vafa Modular Matrix Models • Constructing a matrix model given a modular form • The j -MMM Discussions and Prospectus • A precise program for finding quantum corrections • geometric meaning

  5. Four Short Pieces I. The Klein Invariant • Modular Invariant: The most important (only) meromorphic function invariant under SL (2; Z ) ( z → az + b cz + d , ad − bc = 1) (profound arithmetic properties); � 4 � ϑ 2 ( q ) q := e 2 πiz , j ( e 2 πiz ) : H /SL (2; Z ) → C λ ( q ) := , ϑ 3 ( q ) (1 − λ ( q ) + λ ( q ) 2 ) 3 J ( q ) := 4 j ( q ) := 1728 J ( q ) , λ ( q ) 2 (1 − λ ( q )) 2 27 • The q -expansion q − 1 + 744 + 196884 q + 21493760 q 2 + 864299970 q 3 + j ( q ) = 20245856256 q 4 + 333202640600 q 5 + 4252023300096 q 6 . . .

  6. • j -function and modularity known to Klein, Dedekind, Kronecker, and as far back as Hermite (1859) • Classification of Simple Groups (1970’s) Monster = Largest Sporadic Simple Group M , | M | ∼ 10 53 = 2 46 · 3 20 · 5 9 · 7 6 · 11 2 · 13 3 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 = 808017424794512875886459904961710757005754368000000000 • Andrew Ogg (1975): H / (Γ( p ) ⊂ Γ), �� a � 1 b 0 � � � � has Γ( p ) := � ∈ SL (2; Z ) , c ≡ 0(mod p ) , c d − p 1 genus = 0 if p = 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 41 , 47 , 59 , 71 • Jacque Tits (1975): (described the order of the then-conjectural M in a lecture attended by Ogg);

  7. • Ogg offers a bottle of Jack Daniel’s • Until JOHN McKAY (1978) Letter to Thompson: • MOONSHINE (J. Conway and S. Norton) j -function Monster 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , 864299970 = 2 · 1 + 2 · 196883 + 21296876 + 842609326 , . . . • Frenkel-Lepowski-Meurman: Vertex Algebras (1980’s); • RICHARD BORCHERDS, Proof (1986) Fields (1998)

  8. II. The One-Matrix Model • The Hermitian one-matrix model (easily generalised to complex) � � 1 − 1 � [ D Φ] exp Z = g Tr V (Φ) , Vol( U ( N )) N � � dλ i ∆( λ ) 2 exp 1 − N � � � = V ( λ i ) Vol( U ( N )) g i =1 i Vandermonde: ∆( λ ) = � ( λ j − λ i ) i<j • At PLANAR LIMIT (higher genus ∼ 1 /N -expansions): 1 � – Eigenvalue Density: ρ ( λ ) := δ ( λ − λ i ); N i dτ ρ ( τ ) λ − τ = 1 � g V ′ ( λ ); – Saddle Point: 2 − • CUTS Branch-cuts ❀ solution of integral eq.

  9. dλ ρ ( λ ) � • Resolvent: R ( z ) = z − λ satisies loop equation R ( z ) 2 − 1 1 g V ′ ( z ) R ( z ) − 4 g 2 f ( z ) = 0 • Purely algebraic equation. • Reverse Engineering: 1 ρ ( z ) = 2 πi lim ǫ → 0 ( R ( z + iǫ ) − R ( z − iǫ )) , − 1 g V ′ ( z ) ǫ → 0 ( R ( z + iǫ ) + R ( z − iǫ )) = lim • KEY: knowing R ( z ) ❀ knowing everything about the MM.

  10. III. The Master-Field Formalism • A convenient (algebraic) formulation of matrix models. • In the 1MM, observables are O k := TrΦ k 1 � − N � � �O k � = Z − 1 lim [ D Φ] Tr O k exp g Tr V (Φ) , N N →∞ • Using free probability theory , Voiculescu shewed that correlators of MM are encoded in the CUNTZ algebra aa † = I , a † a = | 0 �� 0 | , with a | 0 � = 0 and there exists a Master Field ˆ M ( a, a † ) s.t. �O k � = � 0 | ˆ M ( a, a † ) k | 0 �

  11. THM [Voiculescu]: In particular, for the 1MM ∞ ˆ � m n ( a † ) n M ( a, a † ) = a + n =0 ( m n are coefficients) • VEV’s are in Voiculsecu polynomials of m n : tr[ M ] := � ˆ M ( a, a † ) � = m 0 , �O 1 � = tr[ M 2 ] := � ˆ M ( a, a † ) 2 � = m 2 �O 2 � = 0 + m 1 , tr[ M 3 ] := � ˆ M ( a, a † ) 3 � = m 3 �O 3 � = 0 + 3 m 0 m 1 + m 2 • Write generating function ∞ K ( z ) = 1 � m n z n z + n =0 then, the resolvent is simply the inverse: R ( z ) = K − 1 ( z ) .

  12. • To determine the Voiculescu polynomials, simply series-invert f ( z ) = 1 z + b 0 + b 1 z + b 2 z 2 + b 3 z 3 + b 4 z 4 + . . . to give + b 04 +6 b 02 b 1 +2 b 12 +4 b 0 b 2 + b 3 z 2 + b 02 + b 1 + b 03 +3 b 0 b 1 + b 2 f − 1 ( z ) 1 z + b 0 = z 3 z 4 z 5 + b 05 +10 b 03 b 1 +10 b 0 b 12 +10 b 02 b 2 +5 b 1 b 2 +5 b 0 b 3 + b 4 + . . . . z 6 Rmk: (McKay) The Voiculescu polynomials ∼ generating function for the number of Dyke paths in a 2-D grid (Catalan Numbers). • KEY POINT: Master Field ❀ Resolvent ❀ Everything about the MM Rmk: The formalism become very convenient for multi-matrix models, e.g., QCD

  13. IV. Dijkgraaf-Vafa • Generalisation and new perspective on the Gopakumar-Vafa large N duality for the conifold. • An intricate web (from Aganagic-Klemm-Mari˜ no-Vafa 0211098) B−Brane on Chern−Simons Mirror Symmetry theory blownup CY Y Canonical quantization Large N duality Large N duality Matrix integral Planar limit Blown up CY Deformed CY ^ X ^ Y Mirror Symmetry

  14. • an U ( n ) gauge theory, adjoint Φ and tree-level superpotential p +1 1 � k g k Tr Φ k W tree (Φ) = k =1 – Full non-pert. effective (Cachazo-Intriligator-Vafa) in 1 32 π 2 Tr W α W α glueball S = W eff ( S ) = n ∂ ∂ S F 0 ( S ) + S ( n log( S / Λ 3 ) − 2 πiτ ) – F 0 ( S ) is the planar free energy of a large N (bosonic) MM with potential W tree (Φ); identify: S ≡ gN (’t Hooft) – N = 1 thy is geometrically engineered on (local) CY3 { u 2 + v 2 + y 2 + W ′ tree ( x ) 2 = f p − 1 ( x ) } ⊂ C 4 ,

  15. – Special Geometry: cpt A -cycles and non-cpt B -cycles, A i Ω , Π i := ∂F 0 � � identify S i = ∂ S i = B i Ω, ( Ni := Bi G 3 ) � � Ai G 3 , α := p p � � � ⇒ W eff ( S ) = G 3 ∧ Ω = S i N i Π i + α CY 3 i =1 i =1 – non-trivial geometry is the hyper-elliptic curve: y 2 = W ′ tree ( x ) 2 + f p − 1 ( x ) – 1. The Seiberg-Witten curve of the N = 1 theory (deformation of N = 2 by W tree ; 2. The spectral curve (loop eq) of MM • KEY POINT: Each (bosonic) MM actually computes non-perturbative information for an N = 1 gauge theory geometrically engineered on a CY3.

  16. Modular Matrix Models Observatio Curiosa: ∞ f ( q ) = q − 1 + a n q n � • q -expansion: n =0 ∞ ˆ M ( a, a † ) = a + m n ( a † ) n � • Master Field: n =0 • Question: Can we consistently construct a MM whose master field is a given modular form? • Take the favourite and most important example: ∞ j ( q ) = 1 m n q n = 1 � q + q + m 0 + m 1 q + . . . n =0 { m 0 , m 1 , . . . , m 5 , . . . } = { 744 , 196884 , 21493760 , 864299970 , 20245856256 , 333202640600 , . . . }

  17. • Procedure: 1. Identify j ( q ) ∼ K ( q ), the generating function for the Master; 2. Resolvent R ( z ) = j − 1 ( e 2 πiz ). • KEY: Find the inverse of j as a function of z . • The Inverse j -function (well-known) � � r ( z ) − s ( z ) j − 1 ( z ) z z � � � � = i , r ( z ) := ˜ r , s ( z ) := ˜ s r ( z )+ s ( z ) 1728 1728 � 5 � 1 � 2 12 , 1 12 ; 1 � r ( z ) ˜ := Γ 2 F 1 2 ; 1 − z , 12 √ � 2 √ z − 1 2 F 1 � 11 � 7 12 , 7 12 ; 3 � s ( z ) ˜ := 2( 3 − 2) Γ 2 ; 1 − z . 12 • The Branch-cuts – Two-cut: ( −∞ , 0] ∪ [1 , ∞ )

  18. – For Hypergeometrics: ǫ → 0 2 F 1 ( a, b ; c ; z − iǫ ) = 2 F 1 ( a, b ; c ; z ) , lim ǫ → 0 2 F 1 ( a, b ; c ; z + iǫ ) = lim 2 πie πi ( a + b − c ) Γ( c ) Γ( c − a )Γ( c − b )Γ( a + b − c +1) 2 F 1 ( a, b ; a + b − c + 1; 1 − z ) + e 2 πi ( a + b − c )2 F 1 ( a, b ; c ; z ) – Discontinuity of the resolvent: πi  3 ( s − r )+( t − u ) e 3 ( s + r )+( t + u ) ± i r − s i r + s , z ∈ ( −∞ , 0);  πi  − e   R ( z + iǫ ) ± R ( z − iǫ ) = (1 ± 1) i r − s r + s , z ∈ (0 , 1);   r + s ± i r + s i r − s  z ∈ (1 , ∞ ) . r − s ,  • KEY: have analytic form for the resolvent • Recall: 1 ρ ( z ) = 2 πi lim ǫ → 0 ( R ( z + iǫ ) − R ( z − iǫ )) − 1 g V ′ ( z ) = ǫ → 0 ( R ( z + iǫ ) + R ( z − iǫ )) lim

  19. Constructing the MMM • The eigenvalue distribution:  � � 1 st − ru z ∈ ( −∞ , 0); ,   πi π  3 ( r + s )) ( r + s )( t + u − e   ρ ( z ) = 0 , z ∈ (0 , 1);   � � 1 2 rs  , z ∈ (1 , ∞ ) .   s 2 − r 2 π • real for z ∈ [1 , ∞ ), so for convenience restrict to this range (similar restriction done in Gross-Witten model) where MM is Hermitian (Rmk: [Lazaroiu] need C -MM for DV) � a • Normalisation and regularisation: a →∞ A ( a ) lim 1 dz ρ ( z ) = 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend