modellingof 3d woven fabrics and 3d reinforced composites
play

Modellingof 3D woven fabrics and 3D reinforced composites: C - PowerPoint PPT Presentation

Modellingof 3D woven fabrics and 3D reinforced composites: C hallenges and solutions Stepan V. LOMOV, Dmitry S. IVANOV, Guillaume PERIE, Ignaas VERPOEST Department MTM, Katholieke Universiteit Leuven 1 Manchester 3D textiles - April 2008


  1. Modellingof 3D woven fabrics and 3D reinforced composites: C hallenges and solutions Stepan V. LOMOV, Dmitry S. IVANOV, Guillaume PERIE, Ignaas VERPOEST Department MTM, Katholieke Universiteit Leuven 1 Manchester 3D textiles - April 2008

  2. C ontents Modelling a 3D woven fabric/composite: Road map … Coding the STRUCTURE … … Modelling the GEOMETRY … … Calculating COMPRESSION, TENSION and SHEAR (without FE?) … … Calculating composite MICROMECHANICS (no need of FE!) … … Building the finite element MESH … … and BEYOND 2 Manchester 3D textiles - April 2008

  3. Modelling a 3D woven fabric/composite: Road map … Coding the STRUCTURE … … Modelling the GEOMETRY … … Calculating COMPRESSION, TENSION and SHEAR (without FE?) … … Calculating composite MICROMECHANICS (no need of FE!) … … Building the finite element MESH … … and BEYOND 3 Manchester 3D textiles - April 2008

  4. R oad map: G eometrical model of the (deformed) unit cell Structure: weave / topology / interlacing – contacts, relative positions Textile mechanics “CAD” Geometry: Placement of the yarns inside the (deformed) unit cell – yarn paths / directions / twist – yarn volumes / cross-sections Meshing Textile mechanics FE mesh: Yarn volumes, contacts Deformations of the dry fabric: compression, tension, shear, bending FE 4 Manchester 3D textiles - April 2008

  5. R oad map: P ermeability of the fabric Geometry: Placement of the yarns inside the (deformed) unit cell – yarn paths / directions / twist – yarn volumes / cross-sections Analytical “Voxelisation” Meshing “Hydraulic” Voxels in the unit cell Mesh of the unit cell (Navier-) Stokes solver Permeability of the fabric 5 Manchester 3D textiles - April 2008

  6. R oad map: Micromechancisof composite Geometry: Placement of the yarns inside the (deformed) unit cell – yarn paths / directions / twist – yarn volumes / cross-sections Orientation “Voxelisation” Meshing averaging Inclusions Voxels in the unit cell Mesh of the unit cell FE Stiffness of the composite Stress/strain fields; damage 6 Manchester 3D textiles - April 2008

  7. WiseTex implementation P redictive Models of textile geometry models of and deformability composites mechanics P redictive models of T extile VR textile permeability F E packages 7 Manchester 3D textiles - April 2008

  8. H istorical note St.-Petersburg State University of Technology and Design Institute of Technical Felts / “Nevskaya Manufactura” • 1990 First version (DOS) of CETKA (=“net” in Russian) software: Internal geometry, mechanical properties and permeability of woven fabrics (one- and multi-layered) • 1993 Windows version of CETKA • 1998 CETKA 3.1, implementing “true” 3D fabric • 1999 CETKA-KUL, including modules to transfer the data to micro- mechanical models of KUL Katholieke Universiteit Leuven, Department MTM: WiseTex 8 Manchester 3D textiles - April 2008

  9. Modelling a 3D woven fabric/composite: Road map … Coding the STRUCTURE … … Modelling the GEOMETRY … … Calculating COMPRESSION, TENSION and SHEAR (without FE?) … … Calculating composite MICROMECHANICS (no need of FE!) … … Building the finite element MESH … … and BEYOND 9 Manchester 3D textiles - April 2008

  10. Warp interlacing: Matrix coding 1 2 3 level 0 1 0 1 2 � � warp 1 1 layer 1 2 3 4 � � 2 1 0 1 level 1 warp 2 � � 1 2 1 0 warp 3 � � layer 2 � � warp 4 0 1 2 1 � � 4 level 2 3 0 4 1 4-1 1 1 2 2 2 1 2-1 4-2 3 3 3 4 0 2-2 1 1 4-3 2 2 4 2-3 3 3 warp zones 10 Manchester 3D textiles - April 2008

  11. “A lternating” / “missing” wefts more on the poster: G. Perie 11 Manchester 3D textiles - April 2008

  12. C oding: C hallenges The matrix coding covers all the warp-interlaced multi-layered weaves. It is implemented in easy-to-use graphical editor. Challenges: Connect the 3D weave coding with the coding used to control the loom (ScotWeave ?) Weave architectures, not covered currently: • Different weave count in the layers • Weft-interlaced weaves • “True” 3D weaves 12 Manchester 3D textiles - April 2008

  13. Modelling a 3D woven fabric/composite: Road map … Coding the STRUCTURE … … Modelling the GEOMETRY … … Calculating COMPRESSION, TENSION and SHEAR (without FE?) … … Calculating composite MICROMECHANICS (no need of FE!) … … Building the finite element MESH … … and BEYOND Structure: weave / topology / interlacing – contacts, relative positions Textile mechanics Geometry: Placement of the yarns inside the (deformed) unit cell – yarn paths / directions / twist – yarn volumes / cross-sections 13 Manchester 3D textiles - April 2008

  14. Input data 1 2 3 level 0 1 0 1 2 � � warp 1 1 layer 1 2 3 4 � � 2 1 0 1 Fabric weave, given by a matrix of warp levels level 1 warp 2 � � 1 2 1 0 warp 3 � � layer 2 � � warp 4 0 1 2 1 � � 4 level 2 Compression and bending behaviour of warp and weft - any number of different types of yarns Q d 2 d 1 Spacing of warp and weft yarns - can be non-uniform Shift between the weft layers in the warp direction. p Wa - defined by the weft insertion and battening process. mid-level 1 mid-level 2 � p We 14 Manchester 3D textiles - April 2008

  15. E lementary crimp interval 6 z 5 4 A A 3 Q 2 h z(x) d 1 F 1 x � Z Q p 0 0 0.2 0.4 0.6 0.8 1 B d 2 h/p p 2 1 z B h � � � � � � � � � W B dx F z ( x ) : z ( 0 ) h / 2 ; z ( 0 ) 0 ; z ( p ) h / 2 ; z ( p ) 0 � � � � � � � � � � � � � � � � � 5 / 2 2 p p 2 � � 1 z � � � � � � 0 p 2 2 W 2 B h 1 z � � � � � � � � � Q F W B dx min � � � � � � � � � � � � 5 / 2 h ph p 2 2 � � 1 z � � � � � � 0 p 2 1 z 1 h z 1 h 1 x � � � � � � � � 2 � � 3 2 2 � � 4 x 6 x 1 A x x 1 x , x � � dx F � � � � � � � � � � � � � � � � � � � h 2 p 2 p 5 / 2 � � p p p 2 � � � � � � 1 z � � � � � � 0 Elastica approach is used for Characteristic functions of the crimp calculation of the characteristic interval are pre-calculated and functions defined by the ratio h/p 15 Manchester 3D textiles - April 2008

  16. ✄ ✄ ✁ ✂ ✂ ✄ ✂ ✄ ✄ ✂ ✄ ✄ ✄ ✄ ✄ ✄ � � ✄ ✄ ☎ ✂ ✄ ☎ ✂ ✄ ✁ ✆ ☎ ✝ ☎ ✄ ☎ ☎ F rom the weave coding to the internal geometry of the fabric weft crimp interval k’ weft j,l ; interval k 1 warp crimp interval k � x Z l We h jl We Z l+1 h jl+1 warp i weft j’,l’ z weft j,l+1 ; interval k 2 warp i weft crimp interval k’’ weft j’’,l’’ Unknown variables Number Equations Wa Wa Wa Wa B h B h 1 � � � � � � i i k i i k 1 Q F F � � � � � � � � ijl Wa Wa � Wa � Wa Wa � Wa � � � 2 p h p p h p � � � � � i k i k i k i k 1 i k 1 i k 1 � Dimensions of warp We We We We B h B h 1 � � � � � � L NWe Q � � � � jl jl jl jl and weft yarns � � Wa Wa Wa ij l F � � F � � 2 NWa NWe K d d ... � � � � � � �� � � jl 1 10 1 � � We We We We We We ik i i Wa 2 � � � � � � � p h p p h p � d l 1 j 1 � � � � jl k jl jl k jl k 1 jl jl k 1 2 ik � � � � � � Vertical positions of L We We We We We We Wa Z Z max ( z � shape , shape , d , d , d , d , d � � � � mid-planes of weft l 1 l tight jl jl 1 1 jlk 2 jlk 1 j , l 1 , k 2 j , l 1 , k 1 j k 1 1 21 21 , j k layers Z l We We We We h P h P ) � � , 1 , 1 , j l j l k jl jlk 2 2 Weft crimp heights L*NWe We We We Wa Wa Wa � � B h B � � h � � � � � � jlk jlk jl ik ik ik W F F � � min We � � � � � � � h Wa � Wa � We We p p p � p � jl i , k j , l , k � � ik ik jlk jlk � � 16 Manchester 3D textiles - April 2008

  17. E xamples of calculations of internal geometry of 3D fabrics/composites Glass 3D woven: X-ray µCT and simulated Carbon/epowy 3D woven: simulated and real cross-sections more on the poster: G. Perie 17 Manchester 3D textiles - April 2008

  18. G eometry: C hallenges 1. Solution of the minimum energy problem: ill-defined optimisation problem, leading to instability in certain cases 2. Approximate assumptions in the geometrical model: Flat middle surfaces of the weft layers Constant crimp height for different crimp intervals of the same weft yarn 3. Symmetric and rigid shape of the cross-sections in the current algorithm. This leads to difficulties for high VF of the composite 18 Manchester 3D textiles - April 2008

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend