modelling heterogeneity in nucleotide sequence evolution
play

Modelling heterogeneity in nucleotide sequence evolution Simon - PowerPoint PPT Presentation

Modelling heterogeneity in nucleotide sequence evolution Simon Whelan Supported by: Isaac Newton Institute Talk outline i. Introduction: what is spatial and temporal heterogeneity? ii. A temporal hidden Markov model of sequence evolution


  1. Modelling heterogeneity in nucleotide sequence evolution Simon Whelan Supported by: Isaac Newton Institute

  2. Talk outline i. Introduction: what is spatial and temporal heterogeneity? ii. A temporal hidden Markov model of sequence evolution iii. Characterizing heterogeneity in real sequence data iv. Heterogeneity and the genetic code

  3. Talk outline i. Introduction: what is spatial and temporal heterogeneity? ii. A temporal hidden Markov model of sequence evolution iii. Characterizing heterogeneity in real sequence data iv. Heterogeneity and the genetic code

  4. Why worry about heterogeneity? Popular models of sequence evolution GTR family for nucleotide substitutions Empirical models for amino acid substitutions (WAG; mtREV) Heterogeneity: rate variation between sites ( Γ -distribution) Heterogeneity and systematic error Seq1 TCTTTATTGACGTGTATGGACAATTC... Heterogeneity can cause popular A C G T Seq2 TCTTTGTTAACGTGCATGGACAATTC... models to go wrong Seq3 TCCTTGCTAACATGCATGGACAATTC... A Seq4 TCTTTGCTAACGTGCATGGATAATTC... C Misleading estimates of evolutionary Seq5 TCTT---TAACGTGCATAGATAACTC... G Seq6 TCAC---TAACATGTATAGATAACTC... relationships T Seq7 TCTCTTCTAACGTGCATTGTGAAGTC... Seq8 TCTCTTTTGACATGTATTGAAAAATC... Model misspecification can confuse inferences about process Heterogeneity is what makes evolution interesting! Can be the result of molecular adaptation or environmental changes Provide an understanding of biological diversity Allows dating of important evolutionary events

  5. Spatial heterogeneity in sequence evolution Also known as pattern heterogeneity Seq1 TCTTTATTGACGTGTATGGACAATTC... Seq2 TCTTTGTTAACGTGCATGGACAATTC... Seq3 TCCTTGCTAACATGCATGGACAATTC... Seq4 TCTTTGCTAACGTGCATGGATAATTC... Seq5 TCTT---TAACGTGCATAGATAACTC... Seq6 TCAC---TAACATGTATAGATAACTC... Seq7 TCTCTTCTAACGTGCATTGTGAAGTC... Seq8 TCTCTTTTGACATGTATTGAAAAATC... A C G T A C G T A C G T A A A C C C G G G T T T Rate = 0.5 Rate = 1.0 Rate = 2.0

  6. Spatial heterogeneity in sequence evolution Also known as pattern heterogeneity Seq1 TCTTTATTGACGTGTATGGACAATTC... Seq2 TCTTTGTTAACGTGCATGGACAATTC... Seq3 TCCTTGCTAACATGCATGGACAATTC... Seq4 TCTTTGCTAACGTGCATGGATAATTC... Seq5 TCTT---TAACGTGCATAGATAACTC... Seq6 TCAC---TAACATGTATAGATAACTC... Seq7 TCTCTTCTAACGTGCATTGTGAAGTC... Seq8 TCTCTTTTGACATGTATTGAAAAATC... A C G T A C G T A C G T A A A C C C G G G T T T Rate = 0.5 Rate = 1.0 Rate = 2.0

  7. Spatial heterogeneity in sequence evolution Also known as pattern heterogeneity Seq1 TCTTTATTGACGTGTATGGACAATTC... Seq2 TCTTTGTTAACGTGCATGGACAATTC... Seq3 TCCTTGCTAACATGCATGGACAATTC... Seq4 TCTTTGCTAACGTGCATGGATAATTC... Seq5 TCTT---TAACGTGCATAGATAACTC... Seq6 TCAC---TAACATGTATAGATAACTC... Seq7 TCTCTTCTAACGTGCATTGTGAAGTC... Seq8 TCTCTTTTGACATGTATTGAAAAATC... A C G T A C G T A C G T A A A C C C G G G T T T Rate = 0.5 Rate = 1.0 Rate = 2.0

  8. Temporal heterogeneity in sequence evolution Seq1 TCTTTATTGACGTGTATGGACAATTC... Seq2 TCTTTGTTAACGTGCATGGACAATTC... Seq3 TCCTTGCTAACATGCATGGACAATTC... Seq4 TCTTTGCTAACGTGCATGGATAATTC... Seq5 TCTT---TAACGTGCATAGATAACTC... Seq6 TCAC---TAACATGTATAGATAACTC... Seq7 TCTCTTCTAACGTGCATTGTGAAGTC... Seq8 TCTCTTTTGACATGTATTGAAAAATC... A C G T A C G T A C G T A A A C C C G G G T T T Rate = 0.5 Rate = 1.0 Rate = 2.0

  9. Temporal heterogeneity in sequence evolution Seq1 TCTTTATTGACGTGTATGGACAATTC... Seq2 TCTTTGTTAACGTGCATGGACAATTC... Seq3 TCCTTGCTAACATGCATGGACAATTC... Seq4 TCTTTGCTAACGTGCATGGATAATTC... Seq5 TCTT---TAACGTGCATAGATAACTC... Seq6 TCAC---TAACATGTATAGATAACTC... Seq7 TCTCTTCTAACGTGCATTGTGAAGTC... Seq8 TCTCTTTTGACATGTATTGAAAAATC... A C G T A C G T A C G T A A A C C C G G G T T T Rate = 0.5 Rate = 1.0 Rate = 2.0

  10. Different forms of temporal heterogeneity Fixed effect temporal heterogeneity Random effect temporal heterogeneity Each site has the same temporal heterogeneity Each site has a randomly chosen type of temporal heterogeneity Seq1 TCTTTATTGACGTGTATGGACAATTCTCTTTAACGTGC Seq1 TCTTTATTGACGTGTATGGACAATTCTCTTTAACGTGC Seq2 TCTTTGTTAACGTGCATGGACAATTCTCTTTAACGTGC Seq2 TCTTTGTTAACGTGCATGGACAATTCTCTTTAACGTGC Seq3 TCCTTGCTAACATGCATGGACAATTCTCTCTAACGTGC Seq3 TCCTTGCTAACATGCATGGACAATTCTCTCTAACGTGC Seq4 TCTTTGCTAACGTGCATGGATAATTCTCTCTGACATGT Seq4 TCTTTGCTAACGTGCATGGATAATTCTCTCTGACATGT Biological causes include %GC-content Biological causes include changes in molecular variation and overall changes in selection structure, and the genetic code (see later) Can distinguish between temporal and spatial Spatial and temporal heterogeneity become intertwined heterogeneity Suitable for analysis under the general Few models widely available for inference Markov model (Barry and Hartigan 1987)

  11. Talk outline i. Introduction: what is spatial and temporal heterogeneity? ii. A temporal hidden Markov model of sequence evolution iii. Characterizing heterogeneity in real sequence data iv. Heterogeneity and the genetic code

  12. Temporal hidden Markov models (THMMs) Purpose of model Describe random effect spatial and temporal heterogeneity Allow simple likelihood computation (reversible; stationary; i.i.d.) Previous incarnations Mostly examine temporal and spatial rate variation Covarion model of Tuffley and Steel and its progeny Other names from phylogenetics and computer science include: • Markov modulated Markov processes (models) • Switching processes • Covarion-like

  13. Substitution classes There are 1,…, g separate HKY substitution processes, each representing a hidden class in a HMM The k th hidden class is defined by rate matrix M k :  ~ ~ ~  − π κ π π k k k k C G T   ~ ~ ~ π − π κ k π k k k   M k = µ k A G T   ~ ~ ~ κ k π π − π k k k   A C T ~ ~ ~ π κ k π π −   k k k   A C G { } ~ ~ ~ ~ π k π k π k π k = nucleotide distribution of hidden class k , , , A C G T µ k = rate of hidden class k κ k = transition/transversion rate ratio of hidden class k Note: Subscripts refer to observable states. Superscripts refer to hidden classes

  14. Temporal heterogeneity: a switching model A reversible Markov model describing the switching rate between hidden classes This process defined by g x g rate matrix C ~ ~   − ρ π ρ g π g 1 , 2 2 1 , �   ~ ~ ρ π − ρ g π g 1 , 2 1 2 ,   C =   � �   ~ ~ ρ g π ρ g π −   1 , 1 2 , 2   ρ k , l = exchangeability between hidden classes k and l ~ ~ ~ π π π g 1 2 � = probability of a hidden class , , , Note: Subscripts refer to observable states. Superscripts refer to hidden classes

  15. Defining a THMM for DNA substitution The 4 g x 4 g instantaneous rate matrix is:  k ≠ = M i j k l for all and i j ,  ~ k l = π l k l = ≠ Q C i j k l ,  , for all and i j j ,  ≠ ≠ i j k l 0 for all and  k l Q , = changes between observable states i , j and hidden classes k , l i j , ~ ~ π = π π k k k Equilibrium distribution is i i Hidden classes and observable states do not change simultaneously Note: Subscripts refer to observable states. Superscripts refer to hidden classes

  16. THMMs for spatial and temporal heterogeneity Class 1 Class 1 Class 2 Class 2 Class 3 Class 3 A C G T A C G T A C G T A C Class 1 Class 1 G T A C Class 2 Class 2 C = G T A C Rate of transitions between Class 3 Class 3 hidden classes relative to G substitution rate 0.07 T Note: Value proportional to bubble area

  17. Mixture models are a special case of THMMs Class 1 Class 2 Class 3 A C G T A C G T A C G T ρ k , l A Restricting all to C zero results in a Class 1 mixture model G T A C Class 2 G Probability of different T hidden classes accounted for by the equilibrium A distribution at the root C Class 3 G T

  18. Talk outline i. Introduction: what is spatial and temporal heterogeneity? ii. A temporal hidden Markov model of sequence evolution iii. Characterizing heterogeneity in real sequence data iv. Heterogeneity and the genetic code

  19. Quantifying heterogeneity in sequence evolution Research questions How important are different types of heterogeneity in sequence evolution? Can any factors predict the degree of evolutionary heterogeneity observed? Experimental design 16 data sets examined • An alignment from groEL (kindly provided by J Herbeck) • 15 alignments from Pandit • Trees estimated using Leaphy under GTR+ Г Use THMM+ Г to investigate different types of heterogeneity • Spatial heterogeneity in rate accounted for separately • Maximum likelihood used to estimate all parameters

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend