modeling the schistosomiasis on the islets in nanjing
play

Modeling the schistosomiasis on the islets in Nanjing Longxing Qi - PowerPoint PPT Presentation

Modeling the schistosomiasis on the islets in Nanjing Longxing Qi School of Mathematical Sciences, Anhui University LAMPS and Department of Mathematics and Statistics, York University () 2013.4.12 1 / 24 Outline 1. Introduction 1 2. Model


  1. Modeling the schistosomiasis on the islets in Nanjing Longxing Qi School of Mathematical Sciences, Anhui University LAMPS and Department of Mathematics and Statistics, York University () 2013.4.12 1 / 24

  2. Outline 1. Introduction 1 2. Model 2 3. Dynamics of the model 3 4. Parameter estimation and simulation 4 5. Control and discussion 5 () 2013.4.12 2 / 24

  3. 1. Introduction Background: Patients, Schistosome, Snail () 2013.4.12 3 / 24

  4. 1. Introduction Background Schistosomiasis () 2013.4.12 4 / 24

  5. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases () 2013.4.12 4 / 24

  6. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people () 2013.4.12 4 / 24

  7. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people Difficult to eradicate () 2013.4.12 4 / 24

  8. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people Difficult to eradicate Four factors in transmission: () 2013.4.12 4 / 24

  9. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people Difficult to eradicate Four factors in transmission: Definitive hosts—-human, mammals () 2013.4.12 4 / 24

  10. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people Difficult to eradicate Four factors in transmission: Definitive hosts—-human, mammals Intermediate hosts—-snails () 2013.4.12 4 / 24

  11. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people Difficult to eradicate Four factors in transmission: Definitive hosts—-human, mammals Intermediate hosts—-snails Schistosome () 2013.4.12 4 / 24

  12. 1. Introduction Background Schistosomiasis One of the most prevalent parasitic diseases 207 million people Difficult to eradicate Four factors in transmission: Definitive hosts—-human, mammals Intermediate hosts—-snails Schistosome Water () 2013.4.12 4 / 24

  13. 1. Introduction Life cycle of schistosome () 2013.4.12 5 / 24

  14. 1. Introduction Two islets in Nanjing () 2013.4.12 6 / 24

  15. 1. Introduction Two islets in Nanjing Two islets: () 2013.4.12 7 / 24

  16. 1. Introduction Two islets in Nanjing Two islets: Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing () 2013.4.12 7 / 24

  17. 1. Introduction Two islets in Nanjing Two islets: Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing No human residents or other livestocks () 2013.4.12 7 / 24

  18. 1. Introduction Two islets in Nanjing Two islets: Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing No human residents or other livestocks Rattus norvegicus infected by schistosome () 2013.4.12 7 / 24

  19. 1. Introduction Two islets in Nanjing Two islets: Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing No human residents or other livestocks Rattus norvegicus infected by schistosome Snails () 2013.4.12 7 / 24

  20. 1. Introduction Two islets in Nanjing Two islets: Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing No human residents or other livestocks Rattus norvegicus infected by schistosome Snails What will happen ? () 2013.4.12 7 / 24

  21. 1. Introduction Two islets in Nanjing Two islets: Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing No human residents or other livestocks Rattus norvegicus infected by schistosome Snails What will happen ? How to control schistosomiasis on this two islets ? () 2013.4.12 7 / 24

  22. 2. Model Model ✻ µ x x s A x ✻ µ x x i ✲ x s Rats α x x i β x x s y i ✲ x i ✲ α y y i β y x i y s A y θ y e ✛ ✛ ✛ ✛ y i y e y s Snails µ y y i µ y y e µ y y s ❄ ❄ ❄ Figure: The flow diagram of schistosomiasis activities. () 2013.4.12 8 / 24

  23. 2. Model Model dx s  dt = A x − µ x x s − β x x s y i ,      dx i   dt = β x x s y i − ( µ x + α x ) x i ,       dy s  (1) dt = A y − µ y y s − β y x i y s ,   dy e    dt = β y x i y s − ( µ y + θ ) y e ,      dy i   dt = θ y e − ( µ y + α y ) y i .   () 2013.4.12 9 / 24

  24. 2. Model Model dx s  dt = A x − µ x x s − β x x s y i ,      dx i   dt = β x x s y i − ( µ x + α x ) x i ,       dy s  (1) dt = A y − µ y y s − β y x i y s ,   dy e    dt = β y x i y s − ( µ y + θ ) y e ,      dy i   dt = θ y e − ( µ y + α y ) y i .   µ x , A y A x µ y : the density—-closely related to the area of the two islets. Chunhua Shan and Professor Huaiping Zhu: The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River (To appear in Bulletin of Mathematical Biology ) () 2013.4.12 9 / 24

  25. 2. Model Parameters A x , per capita reproduction rate of rats; per capita natural death rate of rats; µ x , α x , per capita disease-induced death rate of rats; per capita contact transmission rate from infected snails to β x , susceptible rats; A y , per capita reproduction rate of snails; per capita natural death rate of snails; µ y , α y , per capita disease-induced death rate of snails; per capita contact transmission rate from infected rats to β y , susceptible snails; per capita transition rate from infected and preshedding snails θ, to shedding snails. () 2013.4.12 10 / 24

  26. 3. Dynamics of the model Existence of equilibria () 2013.4.12 11 / 24

  27. 3. Dynamics of the model Existence of equilibria The basic reproduction number: � A x A y θβ x β y R 0 = ρ ( FV − 1 ) = 3 µ x µ y ( µ x + α x )( µ y + α y )( µ y + θ ) . () 2013.4.12 11 / 24

  28. 3. Dynamics of the model Existence of equilibria The basic reproduction number: � A x A y θβ x β y R 0 = ρ ( FV − 1 ) = 3 µ x µ y ( µ x + α x )( µ y + α y )( µ y + θ ) . µ x , 0 , A y The disease free equilibrium E 0 = ( A x µ y , 0 , 0), The unique endemic equilibrium E ∗ = ( x ∗ s , x ∗ i , y ∗ s , y ∗ e , y ∗ i ) ⇐ R 0 > 1 () 2013.4.12 11 / 24

  29. 3. Dynamics of the model Stability of equilibria Using a Lyapunov function: s ln( x s i ln( x i = i { [ x s − x ∗ s − x ∗ s )] + [ x i − x ∗ i − x ∗ i )] } V β y y ∗ s x ∗ x ∗ x ∗ s ln( y s e ln( y e + β x x ∗ i { [ y s − y ∗ s − y ∗ s )] + [ y e − y ∗ e − y ∗ e )] s y ∗ y ∗ y ∗ + µ y + θ i ln( y i [ y i − y ∗ i − y ∗ i )] } , θ y ∗ and by LaSalle’s Invariance Principle, the stability is Theorem The disease free equilibrium E 0 of the system (1) is globally asymptotically stable if R 0 ≤ 1 . Theorem For system (1) , if R 0 > 1 , the endemic equilibrium E ∗ is globally asymptotically stable. () 2013.4.12 12 / 24

  30. 4. Parameter estimation and simulation Data The data are based on the investigation of Nanjing Institute of Parasitic Diseases in the period of 1996-1998. Table: Dissection results of snails from Qianzhou and Zimuzhou islets in 1996-1998 Islet Year No.dissected No.positive (%) Qianzhou 1996 2677 53 (2.0) 1997 8205 53 (0.6) 1998 7538 234(3.1) Zimuzhou 1997 6324 25 (0.4) 1998 5440 27 (0.5) () 2013.4.12 13 / 24

  31. 4. Parameter estimation and simulation Data Table: Dissection results of rats from Qianzhou and Zimuzhou islets in 1996-1998 Islet Year No.dissected No.positive (%) Qianzhou 1996.12-1997.3 69 43 (62.3) 1997.12-1998.3 53 34 (64.2) Zimuzhou 1997.12-1998.3 67 36 (53.7) Total 189 113 (59.8) () 2013.4.12 14 / 24

  32. 4. Parameter estimation and simulation Parameter estimation parameters values(per capita per day) references A x 0.00006 estimated; 9 . 13 × 10 − 4 Xugy,1999 µ x 8 . 33 × 10 − 5 α x Ishikawa,2006 0 . 007 estimated; β x A y 0 . 108 estimated; 2 . 63 × 10 − 3 Anderson,1992, Feng,2005 µ y 4 . 67 × 10 − 3 α y Feng,2005 and Zhou,1988 0 . 0009 estimated β y 2 . 5 × 10 − 2 Allen,2003 θ () 2013.4.12 15 / 24

  33. 4. Parameter estimation and simulation Simulation Figure: The trajectories of x i and y i 0.148 0.0325 0.146 0.032 0.144 0.0315 X[i](t) Y[i](t) 0.142 0.031 0.14 0.0305 0.138 0.03 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 t t () 2013.4.12 16 / 24

  34. 4. Parameter estimation and simulation Simulation Figure: The trajectories of x i and y i 0.148 0.0325 0.146 0.032 0.144 0.0315 X[i](t) Y[i](t) 0.142 0.031 0.14 0.0305 0.138 0.03 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 t t R 0 = 1 . 29 > 1, () 2013.4.12 16 / 24

  35. 4. Parameter estimation and simulation Simulation Figure: The trajectories of x i and y i 0.148 0.0325 0.146 0.032 0.144 0.0315 X[i](t) Y[i](t) 0.142 0.031 0.14 0.0305 0.138 0.03 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 t t R 0 = 1 . 29 > 1, Schistosomiasis will be prevalent on this two islets. () 2013.4.12 16 / 24

  36. 5. Control and discussion Control measures Rats: () 2013.4.12 17 / 24

  37. 5. Control and discussion Control measures Rats: Mousetraps () 2013.4.12 17 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend