modeling the clustering of dark matter haloes in resummed
play

Modeling the clustering of dark-matter haloes in resummed - PowerPoint PPT Presentation

Modeling the clustering of dark-matter haloes in resummed perturbation theories arxiv:astro-ph/1012.4833 Suchita Kulkarni kulkarni@th.physik.uni-bonn.de Bethe Center for Theoretical Physics Universit at Bonn Bonn, Germany Suchita Kulkarni,


  1. Modeling the clustering of dark-matter haloes in resummed perturbation theories arxiv:astro-ph/1012.4833 Suchita Kulkarni kulkarni@th.physik.uni-bonn.de Bethe Center for Theoretical Physics Universit¨ at Bonn Bonn, Germany Suchita Kulkarni, BCTP – p. 1

  2. Outline Introduction: - Linearized theory of large scale structure formation - Standard treatment - Validity Need for going to non-linearities: current approaches Renormalized Perturbation theory Going beyond matter power spectrum - issue of bias Results for bias predictions Summary Suchita Kulkarni, BCTP – p. 2

  3. Introduction - from small to large scale einen kurzen Kino Zeit Suchita Kulkarni, BCTP – p. 3

  4. Large Scale Structure (LSS) Inhomogeneous Universe on small scales - Galaxy clusters and groups - Positions are correlated Great wall - scale of 100 h − 1 Mpc - Universe on length scales > 200 h − 1 Mpc smooth Qn: Can we predict/ understand the structures and their evolution? [SDSS + CfA1] Suchita Kulkarni, BCTP – p. 4

  5. LSS - understanding the formation ∂ρ ∂t + ∇ · ( ρ v ) = 0 Continuity equation ∂ v ∂t + ( v · ∇ ) v + ∇ P = −∇ Φ Euler equation ρ ∇ 2 Φ = 4 πGρ Poisson equation System of non-linear coupled differential equations, no analytical solution in general Continuity equation :- matter conservation Euler equation :- momentum conservation Poisson equation:- gravitational potential Our interest: chasing the evolution of inhomogeneities Suchita Kulkarni, BCTP – p. 5

  6. Linear Theory of LSS Velocity field = homogeneous expansion + peculiar velocity v Density field = Average density field + density contrast δ ( x , t ) ∂ v ∂t + ˙ a a v + 1 − 1 a ( v · ∇ ) v = a ∇ Φ ∂δ ∂t + 1 a ∇ · [(1 + δ ) v ] = 0 3 H 2 Ω m ∇ 2 Φ = δ 2 a Linearize and combine: ∂t − 3 H 2 ∂ 2 δ 0 Ω m ∂t 2 + 2˙ a ∂δ δ = 0 2 a 3 a Has two solutions: δ ∝ a ( t ) Growing mode δ ∝ a − 3 / 2 ( t ) Decaying mode Suchita Kulkarni, BCTP – p. 6

  7. LSS - power spectrum Impossible to exactly simulate our universe - exact initial conditions unknown Statistically predict the properties Correlation function - measure of the statistical properties Two point correlation function - the matter power spectrum Three point correlation function - bi- spectrum . . . P ( k ) δ D ( k + k ′ ) ≡ � δ ( k ) δ ( k ′ ) � Suchita Kulkarni, BCTP – p. 7

  8. Non-linearities - where and why? Suchita Kulkarni, BCTP – p. 8

  9. Non-linearities - where and why? BAO at k ∼ 0 . 1 h/Mpc Potential to constrain expansion history Can differentiate between differ- ent DE models Suchita Kulkarni, BCTP – p. 9

  10. Non-linearities - where and why? BAO at k ∼ 0 . 1 h/Mpc Potential to constrain expansion history Can differentiate between different DE models Model w 0 w m a m ∆ m INV1 -0.4 -0.27 0.18 0.5 INV2 -0.79 -0.67 0.29 0.4 SUGRA -0.82 -0.18 0.1 0.7 2EXP -1.0 0.01 0.19 0.043 AS -0.96 -0.01 0.53 0.13 CNR -1.0 0.1 0.15 0.016 Jennings et.al. 1998 arXiv:0908.1394 Suchita Kulkarni, BCTP – p. 10

  11. Non-linearities - where and why? (Shamelessly) stolen from Y. Wong’s talk given at neutrino 2010 Suchita Kulkarni, BCTP – p. 11

  12. Non-linearities - current approaches Zel’dovich approximation :- d 3 r � (2 π ) 3 e ι k · r � e − [ k 2 σ 2 v − I ( k , r )] − 1 � P ( k ) = PS in Zel’dovich approximation � d 3 q ( k · q ) 2 cos( k · q ) P L ( q ) /q 4 I ( k , r ) ≡ I ( k, 0) /k 2 σ v = Effective expansion in the amplitude of PS Delicate cancellations between different orders Improvement over linear theory Suchita Kulkarni, BCTP – p. 12

  13. Non-linearities - current approaches Numerical simulations Power spectrum (normalized to smooth) 0.01 k [ h / Mpc ] 0.10 1.00 0.01 k [ h / Mpc ] 0.10 1.00 0.10 0.10 0.10 0.10 lin ) log ( ∆ 2 ( k ) / ∆ 2 0.05 0.05 0.05 0.05 0.00 lin ) 0.00 2 log ( ∆ 2 ( k ) / ∆ 2 2 lin ) 0.00 log ( ∆ ( k ) / ∆ ) ( k ) / ∆ 2 log ( ∆ 2 0.00 lin -0.05 -0.05 -0.05 -0.05 -0.10 z = 127.00 -0.10 -0.10 z = 14.87 -0.10 0.01 0.01 k [ h / Mpc ] 0.10 k [ h / Mpc ] 0.10 0.01 1.00 1.00 0.01 0.10 0.10 k [ h / Mpc ] k [ h / Mpc ] 1.00 1.00 2.7 2 0.10 0.10 0.10 0.10 lin ) log ( ∆ 2 ( k ) / ∆ 2 0.05 0.05 0.05 0.05 0.00 2 lin ) log ( ∆ 2 ( k ) / ∆ 2 0.00 0.00 log ( ∆ ) ( k ) / ∆ 2 lin ) 0.00 ( k ) / ∆ 2 lin log ( ∆ 2 -0.05 -0.05 -0.05 -0.05 -0.10 z = 7.02 -0.10 -0.10 z = 3.06 -0.10 0.01 0.01 0.10 k [ h / Mpc ] k [ h / Mpc ] 0.10 0.01 1.00 1.00 0.10 0.1 k [ h / Mpc ] k [ h / Mpc ] 1.0 1.00 1.15 2 0.10 0.10 0.10 0.10 lin ) log ( ∆ 2 ( k ) / ∆ 2 0.05 0.05 0.05 0.05 0.92 2 0.00 log ( ∆ 2 ( k ) / ∆ 2 0.00 lin ) lin ) 2 ( k ) / ∆ 2 0.00 log ( ∆ 0.00 ) lin ( k ) / ∆ 2 log ( ∆ 2 -0.05 -0.05 -0.05 -0.05 -0.10 z = 0.98 -0.10 -0.10 z = 0.00 -0.10 0.01 0.10 1.00 0.10 1.00 k [ h / Mpc ] k [ h / Mpc ] Actual realization of initial fluctuations Millennium simulation dark matter, galaxies Scatter in initial realization due to finite number of modes Springel et. al. 2005 arxiv:astro-ph/0504097 Suchita Kulkarni, BCTP – p. 13

  14. Perturbation Theory for cosmology ∂δ ∂ v ∇ 2 φ = 3 ∂τ + ∇ · [(1 + δ ) v ] = 0; ∂τ + H v + ( v · ∇ ) v = −∇ φ ; 2 Ω m H δ In Fourier space with θ ( x, τ ) ≡ ∇ · v ( x , τ ) ∂ δ ( k , τ ) � d 3 q d 3 p δ D ( k − q − p ) α ( q , p ) θ ( q , τ ) δ ( p , τ ) = 0 + θ ( k , τ ) + ∂ τ ∂ θ ( k , τ ) + H θ ( k , τ ) + 3 � 2 H 2 δ ( k , τ ) + d 3 q d 3 p δ D ( k − q − p ) β ( q , p ) θ ( q , τ ) θ ( p , τ ) = 0 ∂ τ Mode - mode coupling controlled by:- β ( p , q ) = ( p + q ) 2 p · q α ( p , q ) = ( p + q ) · p , p 2 2 p 2 q 2 Suchita Kulkarni, BCTP – p. 14

  15. Linear approximation α ( p , q ) = β ( p , q ) = 0 No mode-mode coupling ∂ δ ( k , τ ) + θ ( k , τ ) = 0 ∂ τ ∂ θ ( k , τ ) + H θ ( k , τ ) + 3 2 H 2 δ ( k , τ ) = 0 ∂ τ Ω m = 1 → H ∼ a 1 / 2 ↓ � a ( τ )  � m 1 Growing mode  δ ( k , τ ) = δ ( k , τ i )   a ( τ i ) m =  − θ ( k , τ ) − 3  Decaying mode  = mδ ( k , τ ) 2 H Suchita Kulkarni, BCTP – p. 15

  16. Compactifying PT for cosmology ∂δ ∂ v ∇ 2 φ = 3 ∂τ + ∇ · [(1 + δ ) v ] = 0; ∂τ + H v + ( v · ∇ ) v = −∇ φ ; 2 Ω m H δ Define        ϕ 1 ( k , η ) δ ( k , η ) 1 − 1 a  ≡ e − η η = log Ω =     a in ϕ 2 ( k , η ) − θ ( k , η ) / H − 3 / 2 3 / 2 Then (assuming EdS cosmology) we can write:- ( δ ab ∂ η + Ω ab ) ϕ b ( k , η ) = e η γ abc ( k , − p , − q ) ϕ b ( p , η ) ϕ c ( q , η ) , With mode-mode coupling γ abc ( k , p , q ) ( a, b, c, = 1 , 2 ) γ 121 ( k , p , q ) = γ 112 ( k , q , p ) = 1 2 δ D ( k + p + q ) α ( p , q ) , γ 222 ( k , p , q ) = δ D ( k + p + q ) β ( p , q ) , Suchita Kulkarni, BCTP – p. 16

  17. Perturbation Theory for cosmology The action is given by � S = dη [ χ a ( − k , η ) ( δ ab ∂ η + Ω ab ) ϕ b ( k , η ) − e η γ abc ( − k , − p , − q ) χ a ( k , η ) ϕ b ( p , η ) ϕ c ( q , η )] � � D ′′ ϕ a D χ b × Z [ J a , K b ; ϕ a (0)] ≡ D ϕ a ( η f ) � η f � � dη χ a ( δ ab ∂ η + Ω ab ) ϕ b − e η γ abc χ a ϕ b ϕ c + J a ϕ a + K a χ a exp i 0 Averaging the probabilities over the initial conditions with a statistical weight function for the physical fields ϕ a (0) , � Z [ J a , K b ; C ′ s ] = D ϕ a (0) W [ ϕ a (0) , C ′ s ] Z [ J a , K b ; ϕ a (0)] . Gaussian initial conditions, the weight function reduces to the form − 1 � � W [ ϕ a (0) , C ab ] = exp 2 ϕ a ( k , 0) C ab ( k ) ϕ b ( − k , 0) , Suchita Kulkarni, BCTP – p. 17 where

  18. Feynman diagrams and all that . . . Tree level diagrams Propagator - linear evolution Power spectrum - initial conditions Vertex - nonlinearities Loop corrections to power spec- trum P ab 2 Suchita Kulkarni, BCTP – p. 18

  19. Does it work? Propagator in large-k limit k k k k g ab 1 − k 2 σ 2 ( e ηa − e ηb ) 2 � � + O ( k 4 σ 4 ) G ab ( k ; η a , η b ) = g ab ( η a , η b ) 2 d 3 q P 0 ( q ) � σ ≡ 1 � � q 2 3 ( σe η a ) − 1 ≃ 0 . 15 hMpc − 1 , in the BAO range PT blows up in the BAO range Suchita Kulkarni, BCTP – p. 19

  20. Renormalized perturbation theory Different contributions can be resumed − k 2 σ 2 v (exp( η ) − 1) 2 / 2 � � G ab ( k, η ) = g ab ( η ) exp Exponential damping in the BAO range Represents the effect of multiple interactions Memory loss Suchita Kulkarni, BCTP – p. 20

  21. Results Results from PT using Zel’dovich Results from PT using field approximation theory methods Fine cancellation between different loop Clearly improved results orders Suchita Kulkarni, BCTP – p. 21

  22. Matter power spectra RG equations for propagator and PS can be written down Result of using the RG for propagator and PS RG for propagator ∂ 2 W λ ∂J a ( k ,η a ) ∂K b ( k ,η a ) = − δ ( k + k ′ ) ∂ λ G ab,λ ( k, η a , η b ) ∂ λ Suppression of PS from RG at k ∼ 0 . 25 hMpc − 1 due to failure of analytical approx- imations RPT, one loop, linear, simulations, halo approach Suchita Kulkarni, BCTP – p. 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend