model reduction for multiscale problems
play

Model reduction for multiscale problems Mario Ohlberger wissen - PowerPoint PPT Presentation

W ESTFLISCHE W ILHELMS -U NIVERSITT M NSTER Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Mnster Institute for W ESTFLISCHE Computational and W ILHELMS -U NIVERSITT Applied


  1. W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster

  2. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Outline Motivation: Multi-Scale and Multi-Physics Problems Model Reduction: The Reduced Basis Approach WWU Münster wissen leben A new Reduced Basis DG Multiscale Method , , M. Ohlberger Model reduction for multiscale problems

  3. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Outline Motivation: Multi-Scale and Multi-Physics Problems Model Reduction: The Reduced Basis Approach WWU Münster wissen leben A new Reduced Basis DG Multiscale Method , , M. Ohlberger Model reduction for multiscale problems

  4. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Example: PEM fuel cells Pore Cell Stack System WWU Münster wissen leben [BMBF-Project PEMDesign: Fraunhofer ITWM and Fraunhofer ISE] , , M. Ohlberger Model reduction for multiscale problems

  5. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Security behavior of nuclear waste disposals WWU Münster wissen leben , , M. Ohlberger Model reduction for multiscale problems

  6. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Example: Hydrological Modeling WWU Münster wissen leben [BMBF-Project AdaptHydroMod: Wald & Corbe, Hügelsheim ] , , M. Ohlberger Model reduction for multiscale problems

  7. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Mathematical Modelling and Model Reduction Real World Problem Continuous Mathematical Model ◮ Here: system of partial differential equations ◮ Problem: infinite dimensional solution space ◮ no solutions in closed form WWU Münster wissen leben , , M. Ohlberger Model reduction for multiscale problems

  8. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Mathematical Modelling and Model Reduction Continuous Mathematical Model Discretization!! WWU Münster wissen leben , , M. Ohlberger Model reduction for multiscale problems

  9. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Mathematical Modelling and Model Reduction Continuous Mathematical Model Discrete model on uniform grid (FEM, FV, DG, ...) ◮ Typical error estimates: || u − u h || ≤ c inf || u − v h || WWU Münster v h ∈ X h wissen leben ◮ Error related to approximation property of X h ◮ = ⇒ Very general approach, but in particular cases not very efficient!! , , M. Ohlberger Model reduction for multiscale problems

  10. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Mathematical Modelling and Model Reduction Continuous Mathematical Model WWU Münster wissen leben , , M. Ohlberger Model reduction for multiscale problems

  11. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Mathematical Modelling and Model Reduction Continuous Mathematical Model Problem specific: Adaptive Mesh Refinement ◮ Typical error estimates: || u − u h || ≤ c η ( u h ) WWU Münster wissen leben ◮ Error related to approximate solution! ◮ = ⇒ Construct optimal mesh! ◮ Problem: Grid construction for every solve! Resulting system is still high-dimensional! , , M. Ohlberger Model reduction for multiscale problems

  12. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Error Control and Adaptivity for HMM HMM for linear elliptic homogenization problems [Ohlberger: Multiscale Model. Simul., 2005] [Henning, Ohlberger: Numer. Math., 2009] HMM for multi-scale transport with large expected drift [Henning, Ohlberger: Netw. Heterog. Media. 2010] [Henning, Ohlberger: J. Anal. Appl. 2011] WWU Münster wissen leben HMM for nonlinear monotone elliptic problems [Henning, Ohlberger 2011] = ⇒ see poster (8) at this workshop , , M. Ohlberger Model reduction for multiscale problems

  13. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Mathematical Modelling and Model Reduction Continuous Mathematical Model Problem class specific: Reduced Basis Method ◮ Typical error estimates: || ( u − u N )( µ ) || ≤ c η ( u N ( µ )) WWU Münster wissen leben ◮ Error related to reduced solution! ◮ = ⇒ Construct optimal reduced space for problem class!! Resulting system is low dimensional! , , M. Ohlberger Model reduction for multiscale problems

  14. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Outline Motivation: Multi-Scale and Multi-Physics Problems Model Reduction: The Reduced Basis Approach WWU Münster wissen leben A new Reduced Basis DG Multiscale Method , , M. Ohlberger Model reduction for multiscale problems

  15. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Reduced Basis Method for Evolution Equations Goal: Fast “Online”-Simulation of Complex Evolution Systems for • Parameter/Design Optimization • Optimal Control • Integration into System Simulation • Uncertainty Quantification Ansatz: • Reduced Basis Method (RB) WWU Münster dim ( W N ) < < dim ( W H ) ! wissen leben , , M. Ohlberger Model reduction for multiscale problems

  16. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Reduced Basis Method for Evolution Equations Goal: Fast “Online”-Simulation of Complex Evolution Systems for • Parameter/Design Optimization • Optimal Control • Integration into System Simulation • Uncertainty Quantification Ansatz: • Reduced Basis Method (RB) WWU Münster dim ( W N ) < < dim ( W H ) ! wissen leben Classical references: notation RB [Noor, Peters ’80], initial value problems [Porsching, Lee ’87], method [Nguyen et al. ’05], book [Patera, Rozza ’07], http://augustine.mit.edu, http://morepas.org , , M. Ohlberger Model reduction for multiscale problems

  17. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Model Reduction: Reduced Basis Method Goal: Find c ( · , t ; µ ) ∈ L 2 (Ω) for t ∈ [ 0 , T ] , µ ∈ P ⊂ ❘ p with ∂ t c ( µ ) + L µ ( c ( µ )) = 0 in Ω × [ 0 , T ] , plus suitable Initial and Boundary Conditions. FV/DG Approximation c H ( µ ) ∈ W H for given Parameter µ Assumption: WWU Münster wissen leben , , M. Ohlberger Model reduction for multiscale problems

  18. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Model Reduction: Reduced Basis Method Goal: Find c ( · , t ; µ ) ∈ L 2 (Ω) for t ∈ [ 0 , T ] , µ ∈ P ⊂ ❘ p with ∂ t c ( µ ) + L µ ( c ( µ )) = 0 in Ω × [ 0 , T ] , plus suitable Initial and Boundary Conditions. FV/DG Approximation c H ( µ ) ∈ W H for given Parameter µ Assumption: Ansatz (RB): Define low dimensional Subspace W N ⊂ W H WWU Münster wissen leben and project FV/DG Scheme onto the Subspace RB Approximation c N ( µ ) ∈ W N . = ⇒ , , M. Ohlberger Model reduction for multiscale problems

  19. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Model Reduction: Reduced Basis Method Goal: Find c ( · , t ; µ ) ∈ L 2 (Ω) for t ∈ [ 0 , T ] , µ ∈ P ⊂ ❘ p with ∂ t c ( µ ) + L µ ( c ( µ )) = 0 in Ω × [ 0 , T ] , plus suitable Initial and Boundary Conditions. FV/DG Approximation c H ( µ ) ∈ W H for given Parameter µ Assumption: Ansatz (RB): Define low dimensional Subspace W N ⊂ W H WWU Münster wissen leben and project FV/DG Scheme onto the Subspace RB Approximation c N ( µ ) ∈ W N . = ⇒ Requirement: • Efficient Choice of W N (Exponential Convergence in N) • Offline–Online Decomposition for all Calculations • Error Control for || c H ( µ ) − c N ( µ ) || , , M. Ohlberger Model reduction for multiscale problems

  20. Institute for W ESTFÄLISCHE Computational and W ILHELMS -U NIVERSITÄT Applied Mathematics M ÜNSTER > Model Reduction: Reduced Basis Method Assumption: FV/DG Scheme for Evolution Equations c 0 L k I ( µ )[ c k + 1 ( µ )] = L k E ( µ )[ c k H ( µ )] + b k ( µ ) . H = P [ c 0 ( µ )] , H with time step counter k and c k H ( µ ) ∈ W H . WWU Münster wissen leben , , M. Ohlberger Model reduction for multiscale problems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend