minimal presentations of shifted numerical monoids
play

Minimal presentations of shifted numerical monoids Christopher - PowerPoint PPT Presentation

Minimal presentations of shifted numerical monoids Christopher ONeill Texas A&M University coneill@math.tamu.edu Joint with Rebecca Conaway*, Felix Gotti, Jesse Horton*, Roberto Pelayo, Mesa Williams*, and Brian Wissman * =


  1. Minimal presentations of shifted numerical monoids Christopher O’Neill Texas A&M University coneill@math.tamu.edu Joint with Rebecca Conaway*, Felix Gotti, Jesse Horton*, Roberto Pelayo, Mesa Williams*, and Brian Wissman * = undergraduate student May 7, 2016 Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 1 / 15

  2. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  3. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , . . . } . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  4. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , . . . } . “McNugget Monoid” Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  5. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , . . . } . “McNugget Monoid” Factorizations: 60 = Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  6. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , . . . } . “McNugget Monoid” Factorizations: 60 = 7(6) + 2(9) Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  7. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , . . . } . “McNugget Monoid” Factorizations: 60 = 7(6) + 2(9) = 3(20) Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  8. Numerical monoids Definition A numerical monoid S is an additive submonoid of N with | N \ S | < ∞ . Example McN = � 6 , 9 , 20 � = { 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , . . . } . “McNugget Monoid” Factorizations: 60 = 7(6) + 2(9) � (7 , 2 , 0) = 3(20) (0 , 0 , 3) � Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 2 / 15

  9. 50 100 150 200 250 0 5 10 15 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 3 / 15

  10. 250 0 15 10 50 100 150 200 5 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 3 / 15

  11. 250 0 15 10 5 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 3 / 15

  12. 250 0 15 10 5 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 3 / 15

  13. 200 250 15 10 5 0 50 100 150 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : c( M n ) is periodic-linear (quasilinear) for n ≥ 126. Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 3 / 15

  14. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 4 / 15

  15. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 4 / 15

  16. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 4 / 15

  17. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 4 / 15

  18. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . M n = � n , n + 6 , n + 9 , n + 20 � : ∆( M n ) = { 1 } for all n ≥ 48 Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 4 / 15

  19. 0 2000 4000 50 100 150 200 250 3000 1000 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 5 / 15

  20. 0 1000 4000 3000 50 100 150 200 250 2000 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ): Betti numbers of the defining toric ideal I M n . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 5 / 15

  21. 250 0 4000 3000 2000 1000 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ): Betti numbers of the defining toric ideal I M n . Theorem (Vu, 2014) The Betti numbers of M n are eventually r k -periodic in n. Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 5 / 15

  22. 200 250 4000 3000 2000 1000 0 50 100 150 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ): Betti numbers of the defining toric ideal I M n . Theorem (Vu, 2014) The Betti numbers of M n are eventually r k -periodic in n. M n = � n , n + 6 , n + 9 , n + 20 � : Graded degrees for β 0 ( M n ) Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 5 / 15

  23. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 6 / 15

  24. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 6 / 15

  25. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 6 / 15

  26. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 6 / 15

  27. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c( M n ) is eventually r k -quasilinear. Christopher O’Neill (Texas A&M University) Shifted numerical monoids May 7, 2016 6 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend