minimal presentations of shifted numerical monoids
play

Minimal presentations of shifted numerical monoids Christopher - PowerPoint PPT Presentation

Minimal presentations of shifted numerical monoids Christopher ONeill University of California Davis coneill@math.ucdavis.edu Joint with Rebecca Conaway*, Felix Gotti, Jesse Horton*, Roberto Pelayo, Mesa Williams*, and Brian Wissman * =


  1. 250 0 15 10 5 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 4 / 23

  2. 250 0 15 10 5 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 4 / 23

  3. 200 250 15 10 5 0 50 100 150 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Catenary degree c( M n ): measures spread of factorizations in M n . M n = � n , n + 6 , n + 9 , n + 20 � : c( M n ) is periodic-linear (quasilinear) for n ≥ 126. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 4 / 23

  4. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 5 / 23

  5. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 5 / 23

  6. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 5 / 23

  7. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . M n = � n , n + 6 , n + 9 , n + 20 � : Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 5 / 23

  8. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Delta set ∆( M n ): successive factorization length differences in M n . Theorem (Chapman-Kaplan-Lemburg-Niles-Zlogar, 2014) The delta set ∆( M n ) is singleton for n ≫ 0 . M n = � n , n + 6 , n + 9 , n + 20 � : ∆( M n ) = { 1 } for all n ≥ 48 Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 5 / 23

  9. 0 2000 4000 50 100 150 200 250 3000 1000 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 6 / 23

  10. 0 1000 4000 3000 50 100 150 200 250 2000 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ): Betti numbers of the defining toric ideal I M n . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 6 / 23

  11. 250 0 4000 3000 2000 1000 50 100 150 200 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ): Betti numbers of the defining toric ideal I M n . Theorem (Vu, 2014) The Betti numbers of M n are eventually r k -periodic in n. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 6 / 23

  12. 200 250 4000 3000 2000 1000 0 50 100 150 To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Betti numbers β i ( M n ): Betti numbers of the defining toric ideal I M n . Theorem (Vu, 2014) The Betti numbers of M n are eventually r k -periodic in n. M n = � n , n + 6 , n + 9 , n + 20 � : Graded degrees for β 0 ( M n ) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 6 / 23

  13. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  14. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  15. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  16. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  17. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c( M n ) is eventually r k -quasilinear. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  18. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c( M n ) is eventually r k -quasilinear. Underlying cause: Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  19. To shift a numerical monoid. . . Fix S = � r 1 , . . . , r k � ⊂ ( N , +), and let M n = � n , n + r 1 , . . . , n + r k � . Observations: Known: the Betti numbers n �→ β i ( M n ) are eventually r k -periodic. Known: the function n �→ ∆( M n ) is eventually singleton. Observed: the function n �→ c( M n ) is eventually r k -quasilinear. Underlying cause: minimal presentations! Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 7 / 23

  20. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 8 / 23

  21. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 8 / 23

  22. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 8 / 23

  23. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 8 / 23

  24. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 8 / 23

  25. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  26. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � a �− → a 1 r 1 + · · · + a k r k Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  27. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  28. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  29. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  30. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a x a − x b ∈ I S ⇒ x b − x a ∈ I S a ∼ b ⇒ b ∼ a a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  31. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a x a − x b ∈ I S ⇒ x b − x a ∈ I S a ∼ b ⇒ b ∼ a ( x a − x b ) + ( x b − x c ) = x a − x c a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  32. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � Factorization homomorphism: Monomial map: π : N k − → � r 1 , . . . , r k � ϕ : k [ x 1 , . . . , x k ] − → k [ y ] y r i a �− → a 1 r 1 + · · · + a k r k x i �− → Definition The kernel ker π is the relation ∼ on N k with a ∼ b whenever x a − x b ∈ I S = ker ϕ π ( a ) = π ( b ) ker π is a congruence : an equivalence relation x a − x a = 0 ∈ I S a ∼ a x a − x b ∈ I S ⇒ x b − x a ∈ I S a ∼ b ⇒ b ∼ a ( x a − x b ) + ( x b − x c ) = x a − x c a ∼ b and b ∼ c ⇒ a ∼ c that is closed under translation . x a − x b ∈ I S ⇒ x c ( x a − x b ) ∈ I S a ∼ b ⇒ a + c ∼ b + c Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 9 / 23

  33. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  34. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  35. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  36. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  37. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  38. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  39. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): ((7 , 2 , 0) , (4 , 4 , 0)) = ((3 , 0 , 0) , (0 , 2 , 0)) + ((4 , 2 , 0) , (4 , 2 , 0)) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  40. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): ((7 , 2 , 0) , (4 , 4 , 0)) = ((3 , 0 , 0) , (0 , 2 , 0)) + ((4 , 2 , 0) , (4 , 2 , 0)) Cong( ρ ) = ker π when the graph on π − 1 ( n ) is connected for all n ∈ S . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  41. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): ((7 , 2 , 0) , (4 , 4 , 0)) = ((3 , 0 , 0) , (0 , 2 , 0)) + ((4 , 2 , 0) , (4 , 2 , 0)) Cong( ρ ) = ker π when the graph on π − 1 ( n ) is connected for all n ∈ S . I S = � x u − x v : ( u , v ) ∈ ρ � Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 10 / 23

  42. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  43. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  44. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  45. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  46. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  47. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  48. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  49. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  50. Kernel congruences and minimal presentations Let S = � r 1 , . . . , r k � . a = ( a 1 , . . . , a k ) ∈ N k n = a 1 r 1 + · · · + a k r k � π : N k − → � r 1 , . . . , r k � �− → a 1 r 1 + · · · + a k r k a Definition A minimal presentation ρ of S is a minimal subset ρ ⊂ ker π whose reflexive, symmetric, transitive, and translation closure equals ker π . S = � 6 , 9 , 20 � : ρ = { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } ⊂ ker π π − 1 (18): π − 1 (60): All minimal presentations: { ((3 , 0 , 0) , (0 , 2 , 0)) , ((10 , 7 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((7 , 2 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((4 , 4 , 0) , (0 , 0 , 3)) } { ((3 , 0 , 0) , (0 , 2 , 0)) , ((1 , 6 , 0) , (0 , 0 , 3)) } β 0 ( I S ) = { 18 , 60 } Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 11 / 23

  51. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  52. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  53. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  54. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  55. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  56. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  57. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  58. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) 2 types of minimal relations a ∼ b : Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  59. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  60. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap) | a | = | b | Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  61. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap) | a | = | b | Relations that change # copies of n (costly) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  62. Intuition: “sufficiently shifted” monoids π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n n + ( n + r 1 ) + · · · + ( n + r k ) 2 types of minimal relations a ∼ b : Relations among r 1 , . . . , r k (cheap) | a | = | b | Relations that change # copies of n (costly) mostly a k ← − − − − − − → mostly b 0 Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 12 / 23

  63. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 13 / 23

  64. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 13 / 23

  65. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 13 / 23

  66. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . DON’T PANIC! Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 13 / 23

  67. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 14 / 23

  68. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Sneak peek for M n = � n , n + 6 , n + 9 , n + 20 � and n ≫ 0: Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 14 / 23

  69. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Sneak peek for M n = � n , n + 6 , n + 9 , n + 20 � and n ≫ 0: M 450 : � (( 0 , 0 , 8 , 0) , (3 , 2 , 0 , 3)) , (( 0 , 1 , 6 , 0) , (4 , 0 , 0 , 3)) , (( 0 , 3 , 0 , 0) , (1 , 0 , 2 , 0)) , � ((20 , 5 , 0 , 0) , (0 , 0 , 0 , 24)) , ((25 , 1 , 0 , 0) , (0 , 0 , 4 , 21)) , ((26 , 0 , 0 , 0) , (0 , 2 , 2 , 21)) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 14 / 23

  70. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Sneak peek for M n = � n , n + 6 , n + 9 , n + 20 � and n ≫ 0: M 450 : � (( 0 , 0 , 8 , 0) , (3 , 2 , 0 , 3)) , (( 0 , 1 , 6 , 0) , (4 , 0 , 0 , 3)) , (( 0 , 3 , 0 , 0) , (1 , 0 , 2 , 0)) , � ((20 , 5 , 0 , 0) , (0 , 0 , 0 , 24)) , ((25 , 1 , 0 , 0) , (0 , 0 , 4 , 21)) , ((26 , 0 , 0 , 0) , (0 , 2 , 2 , 21)) M 470 : � (( 0 , 0 , 8 , 0) , (3 , 2 , 0 , 3)) , (( 0 , 1 , 6 , 0) , (4 , 0 , 0 , 3)) , (( 0 , 3 , 0 , 0) , (1 , 0 , 2 , 0)) , � ((21 , 5 , 0 , 0) , (0 , 0 , 0 , 25)) , ((26 , 1 , 0 , 0) , (0 , 0 , 4 , 22)) , ((27 , 0 , 0 , 0) , (0 , 2 , 2 , 22)) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 14 / 23

  71. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Sneak peek for M n = � n , n + 6 , n + 9 , n + 20 � and n ≫ 0: M 450 : � (( 0 , 0 , 8 , 0) , (3 , 2 , 0 , 3)) , (( 0 , 1 , 6 , 0) , (4 , 0 , 0 , 3)) , (( 0 , 3 , 0 , 0) , (1 , 0 , 2 , 0)) , � ((20 , 5 , 0 , 0) , (0 , 0 , 0 , 24)) , ((25 , 1 , 0 , 0) , (0 , 0 , 4 , 21)) , ((26 , 0 , 0 , 0) , (0 , 2 , 2 , 21)) M 470 : � (( 0 , 0 , 8 , 0) , (3 , 2 , 0 , 3)) , (( 0 , 1 , 6 , 0) , (4 , 0 , 0 , 3)) , (( 0 , 3 , 0 , 0) , (1 , 0 , 2 , 0)) , � ((21 , 5 , 0 , 0) , (0 , 0 , 0 , 25)) , ((26 , 1 , 0 , 0) , (0 , 0 , 4 , 22)) , ((27 , 0 , 0 , 0) , (0 , 2 , 2 , 22)) M 490 : � (( 0 , 0 , 8 , 0) , (3 , 2 , 0 , 3)) , (( 0 , 1 , 6 , 0) , (4 , 0 , 0 , 3)) , (( 0 , 3 , 0 , 0) , (1 , 0 , 2 , 0)) , � ((22 , 5 , 0 , 0) , (0 , 0 , 0 , 26)) , ((27 , 1 , 0 , 0) , (0 , 0 , 4 , 23)) , ((28 , 0 , 0 , 0) , (0 , 2 , 2 , 23)) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 14 / 23

  72. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

  73. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Φ n is well-defined. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

  74. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Φ n is well-defined. π n ( a ) = a 0 n + � k i =1 a i ( n + r i ) = | a | n + � k i =1 a i r i = | a | n + | a | r k + � k π n + r k ( a ) = i =1 a i r i Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

  75. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Φ n is well-defined. π n ( a ) = a 0 n + � k i =1 a i ( n + r i ) = | a | n + � k i =1 a i r i = | a | n + | a | r k + � k π n + r k ( a ) = i =1 a i r i Φ n preserves reflexive and symmetric closure. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

  76. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Φ n is well-defined. π n ( a ) = a 0 n + � k i =1 a i ( n + r i ) = | a | n + � k i =1 a i r i = | a | n + | a | r k + � k π n + r k ( a ) = i =1 a i r i Φ n preserves reflexive and symmetric closure. Φ n preserves translation closure. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

  77. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Φ n is well-defined. π n ( a ) = a 0 n + � k i =1 a i ( n + r i ) = | a | n + � k i =1 a i r i = | a | n + | a | r k + � k π n + r k ( a ) = i =1 a i r i Φ n preserves reflexive and symmetric closure. Φ n preserves translation closure. Φ n (( a , a ′ ) + ( b , b )) = Φ n ( a , a ′ ) + ( b , b ) Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

  78. The shifting map π n : N k +1 M n = � n , n + r 1 , . . . , n + r k � , − → M n Shifting map Φ n : ker π n − → ker π n + r k given by  ( a , a ′ ) | a | = | a ′ |  ( a + ℓ e k , a ′ + ℓ e 0 ) ( a , a ′ ) �− → | a | < | a ′ | ( a + ℓ e 0 , a ′ + ℓ e k )  | a | > | a ′ | � � where ℓ = � | a | − | a ′ | � . Φ n is well-defined. π n ( a ) = a 0 n + � k i =1 a i ( n + r i ) = | a | n + � k i =1 a i r i = | a | n + | a | r k + � k π n + r k ( a ) = i =1 a i r i Φ n preserves reflexive and symmetric closure. Φ n preserves translation closure. Φ n (( a , a ′ ) + ( b , b )) = Φ n ( a , a ′ ) + ( b , b ) Only missing link: transitivity. Christopher O’Neill (UC Davis) Shifted numerical monoids Sep 26, 2016 15 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend