miga and elgar new perspectives for low frequency
play

MIGA AND ELGAR: NEW PERSPECTIVES FOR LOW FREQUENCY GRAVITATIONAL - PowerPoint PPT Presentation

MIGA AND ELGAR: NEW PERSPECTIVES FOR LOW FREQUENCY GRAVITATIONAL WAVE OBSERVATION USING ATOM INTERFEROMETRY MIGA, GDR Ondes Gravitationnelles, 20/06/2018 1 MIGA Project A new large instrument combining matter- wave and laser interferometry


  1. MIGA AND ELGAR: NEW PERSPECTIVES FOR LOW FREQUENCY GRAVITATIONAL WAVE OBSERVATION USING ATOM INTERFEROMETRY MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 1

  2. MIGA Project A new large instrument combining matter- wave and laser interferometry • Gravitational wave physics • Demonstrator for future sub-Hz ground based GW detectors • Geoscience • Gravity sensitivity of 10 -10 g/Sqrt(Hz) @ 2Hz • Gradient sensitivity of 10 -13 s -2 /Sqrt(Hz) @ 2Hz: geology, hydrogeology… A Large research infrastructure hosted in a low noise laboratory • Two 200 m horizontal optical cavity coupled with 3 AI • Possible evolutions towards 2D or 3D instrument on Nice site Toulon MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 2

  3. Paris : Physics Design of a large-scale instrument Metrology with interdisciplinary applications Geophys. and based on recent advances in atomic atomic Astrophys. interferometry: MIGA is the first of a Rustrel : new generation of detectors both built sensors Interféromètres underground and using quantum Geophysic m a n i p u l a t i o n o f a t o m s f o r s and geosciences, seismology and Bordeaux : 
 Instrument fundamental physics. lasers, operation C o o r d i n a t i o n o f e x p e r t s i n instrument fundamental physics, geosciences development and astronomy. , prototype A first generation of research facility and enabling high-precision tests to be maintenance carried out by different communities. An important step towards a low- frequency gravitational strain sensor with an interest in the detection of gravitational waves and also � 3 geophysics. MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  4. Can we extend the frequency band of state-of-the-art GW detectors? Sesana, arxiv.org/1602.06951 State-of-the-art GW detectors sense the ultimate evolution phase of binary systems • A transient of a few hundreds of ms which corresponds to system coalescence With low frequency detectors (f<1Hz) • Observation of the same sources on quasi continuous timescales A new astronomy is possible with low frequency detectors MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 4

  5. Can we extend the frequency band of state-of-the-art GW detectors? • New observables • New sources Space Ground Underground � 5 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  6. How to extend the frequency band of state-of-the-art GW detectors? Limitations for f<10 Hz: • Radiation pressure noise • Imperfections of Mirror suspensions • « Gravity gradient » noise « Advanced LIGO » Sensitivity « Gravity Gradient » noise Fluctuations of the Earth gravity field MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 6

  7. Cold atoms for GW detection ? Let’s use free falling atoms as “test masses” instead of mirrors δϕ las ∝ khL L Enable to overcome: • Limitations related to suspension systems. • Radiation pressure noise. Sensitivity to Gravity Gradient Noise is the same ! Suspended mirors Free falling atoms MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 7

  8. Networks of AIs for Gravity Gradient Noise cancellation Example of the MIGA Geometry X i X j ∝ kh ( X i − X j ) • Effet GW Δφ ati - Δφ atj Gravity gradient ∝ 2 kT 2 a ( X i ) − a ( X j ) • ⎡ ⎤ ⎣ ⎦ Discrimination between GW effects and gravity gradients using the spatial resolution of the antenna • Low frequency (10 -2 -10 Hz) GW detection limited by detection noise • Measures of the local gravity field = Geoscience MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 8

  9. Networks of AIs for Gravity Gradient Noise cancellation Use of AI offers possibility to spatially resolve gravity ➡ GW have long wavelength while GG have short characteristic length of variation (1 m – few km) ➡ Correlations between distant sensors provide information on the GG noise and allows to discriminate it from the GW signal correlations GW signal Inertial signal X � 9 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  10. Networks of AIs for Gravity Gradient Noise cancellation Strain sensitivity ➡ Shot noise ➡ Seismic noise ➡ W. Chaibi, et al. Phys. Rev. D 93, 021101(R), 2016 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  11. Next generation Matter-wave antenna can reach sensitivity Dense arrays of Atom Interferometers could be used as future GW detectors L tot =32 km • • N=80 gradiometers • baseline L = 16 km L tot • Gravitational Wave signal can be extracted using a spatial averaging method • N Correlated gradiometers enable to average the GGN over several realizations N H N ( t ) = 1 ∑ ψ i ( t ) N i = 1 The geometry of the detector ( δ ,L) is chosen with respect to the spatial correlation • properties of the GGN. MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 11

  12. GGN reduction with an AI network • Gain of about factor 10 in the 100 mHz 1 Hz band • Space for improvement using all spatial information of the network (use different baseline L in the numerical treatment) MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 12

  13. Tools for next generation Matter-wave antenna Measurement noise 100 times lower than the quantum- Stability enhancement by joint phase projection limit using entangled atoms measurements in a single cold atomic Nature 529, 505–508 fountain Phys. Rev. A 90, 063633 Phase Locking a Clock Oscillator to a Coherent Quantum superposition at the half-metre scale Atomic Ensemble Phys. Rev. X 5, 021011 Nature 528, 530–533 � 13 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  14. Underground site (LSBB) for MIGA MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 14

  15. MIGA at the LSBB site 200 m • A dismissed military facility • Former command centre for nuclear force • Infrastructure works will start end 2017 • MIGA installation: mid 2019 MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 15

  16. The MIGA Instrument Cavité ultra-stable 200 m couplée à 3 IA 200 m � 16 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  17. MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 17

  18. MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 18

  19. MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 19

  20. LSBB, a site of geological interest MIGA: Access to gravity gradient & higher orders, long term fluctuations MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 20

  21. LSBB, a low noise site for MIGA Environmental noise may prevent to reach detection noise (quantum noise) easily. Usual suspects: seismic and magnetic noise − 4 10 RMS noise on AI − 5 Tipical lab conditions (filtered) 10 Acceleration m.s − 2.Hz − 1/2 measurements induced by seismic noise: − 6 10 σ φ =640 mrad σ φ =60 mrad − 7 10 − 8 10 − 9 10 LSBB − 10 10 − 2 − 1 0 1 2 10 10 10 10 10 Frequency (Hz) Underground operation enables AI to reach optimal performances ≈ 5 10 -10 g = 0.5 µGal See T. Farah, et al., Gyroscopy Navig. 5 , 266 (2014). MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 21

  22. Collaboration with TOTAL to predict escalated site Nor 1% d 2% GW 2% Core analysis and wall imaging Geological modeling Carbonated reservoir prediction Environment Core area 240 m - C1-C3 MIGA hydro-geological analysis around Tank exploration MIGA Geotechnical anticipation of drilling Seismic models � 22 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  23. Projection of GGN for MIGA Sources Gravity Gradient noise on detector site (10 -2 -10 Hz) • Seismic GGN • Atmospheric GGN • Other : geophysical properties (hydrology), linked to human activity Seismic GGN for MIGA at LSBB • STS-2 sensor MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 23

  24. Projection for seismic noise MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 24

  25. Projection for seismic noise MIGA (current design) MIGA (improved design) S/N x 10, LMT 100 hk MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 25

  26. Projection for infrasound noise MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 26

  27. Projection for infrasound noise MIGA (current design) MIGA (improved design) S/N x 10, LMT 100 hk MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 27

  28. MIGA status and perspectives MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 28

  29. The MIGA antenna ϕ ( X 1 ) ϕ ( X 2 ) ϕ ( X 3 ) s s s π π 30 cm π /2 ≈ 100m ≈ 100m � 29 MIGA, GDR Ondes Gravitationnelles, 20/06/2018

  30. Test and callibration set-ups MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 30

  31. Accelerometer set up MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 31

  32. Accelerometer set up MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 32

  33. Accelerometer set up MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 33

  34. MIGA Status 2012 2014 – First design of the instrument 2016 – Publication (PRD) of the 
 Newtonian Noise suppression 
 2013 technique 2015 – Gravimeter 2014 2015 2016 2017 2013 - Project manager 2017 – Gallery 
 hired from VIRGO preparations 2017 – 3 sensors ready 2018 2018 - prototype 
 2015 – First 2019 2019 
 suspension and 2016 – GW discovery Instrument online sensor prototype MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend