michael todd
play

Michael Todd May 4, 2011 M. Todd 1 , D. Coward 2 and M.G. Zadnik 1 - PowerPoint PPT Presentation

An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia Michael Todd May 4, 2011 M. Todd 1 , D. Coward 2 and M.G. Zadnik 1 Email: michael.todd@icrar.org 1 Curtin


  1. An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia Michael Todd May 4, 2011 M. Todd 1 , D. Coward 2 and M.G. Zadnik 1 Email: michael.todd@icrar.org 1 Curtin University, Western Australia 2 The University of Western Australia

  2. Part 1 The Zadko Telescope 1 GREAT-SSO, Pisa, 4 May 2011

  3. Zadko Telescope - Introduction Rapid response optical telescope Fully robotic Unique location 2 GREAT-SSO, Pisa, 4 May 2011

  4. Zadko Telescope – Specifications Telescope: Primary mirror aperture 1.0 m Focal length 4.0 m Focal ratio f/4.0 Camera: Model Andor iKon DW436BV CCD array 2048 x 2048 pixels Pixel size 13.5 x 13.5 µm -50 ° C Operating temperature Field of view 23.5 x 23.5 arc-minutes Limiting magnitude R≈21 (180 s exposure) Location: 115 ° 42’47.2” E Longitude 31 ° 21’21.5” S Latitude Altitude 50 m ASL (Coward et al. 2010) 3 GREAT-SSO, Pisa, 4 May 2011

  5. Zadko Telescope - Location About 70 km north from Perth 4 GREAT-SSO, Pisa, 4 May 2011

  6. Zadko Telescope - Location Co-located with Australian LIGO, the Gravity Discovery Centre (a science education outreach facility) and the Leaning Tower of Gingin (Torre pendente di Gingin) 5 GREAT-SSO, Pisa, 4 May 2011

  7. TAROT TAROT (Télescopes à Action Rapide pour les Objets Transitoires)  a network of fully robotic rapid response telescopes (Klotz et al. 2008) Zadko Telescope + TAROT  a global fast response robotic telescope network for the study of multispectra transients and potentially dangerous Earth-orbiting space debris 6 GREAT-SSO, Pisa, 4 May 2011

  8. TAROT TAROT Calern: first light 1998. 15 GRBs observed since 2004. TAROT La Silla: first light 2006. 6 GRBs observed since 2006. (http://tarot.obs-hp.fr) Zadko Telescope: first light 2009. 7 GRBs observed since 2009.  robotised and networked with TAROT in 2010 1998 2006 2010 7 GREAT-SSO, Pisa, 4 May 2011

  9. Automatic vs Robotic Automatic telescope • Surveys • Scheduling done before night • Routine Supernova search, variable stars • 1+ operators • e.g. OGLE, EROS, LSST Can interrupt schedule from Robotic telescope } external triggers • Targets of Opportunity -GRB • -Gravity Wave Rescheduling during the night -Neutrino... • GRB (early detections), confirmations • no operator required • e.g. ROTSE, TAROT, ASAS (Klotz 2008) 8 GREAT-SSO, Pisa, 4 May 2011

  10. Robotic Software Structure Not telescope dependent! 9 GREAT-SSO, Pisa, 4 May 2011

  11. Current Projects Research projects Spectrum Partners Status Gamma ray bursts GRB optical TAROT (France), UWA, Current follow-up Curtin Gamma ray bursts GRB astrophysics TAROT/NASA Current Gravitational waves GW triggers LIGO/VIRGO Current searches MOU in place Extra-Galactic Neutrino Neutrino triggers ANTARES, TAROT Pilot program 2011 searches Binary asteroid studies Optical UWA, OCA, Curtin Current Education outreach Optical UWA, Curtin, Current Polly Farmer Foundation 10 GREAT-SSO, Pisa, 4 May 2011

  12. Future Projects Research projects Spectrum Partners Status Optical follow-up of Radio triggers ICRAR/ASKAP Proposed 2012 radio transients (Australian SKA Pathfinder) GAIA Satellite follow-up Optical ESA, OCA, Obs. Paris Proposed 2012 GBOT (GAIA) Optical ESA, OCA, Obs. Paris Proposed 2012 Space-debris tracking Optical TAROT, ICRAR, CNRES, Pilot program 2010 ESA Proposed 2012 11 GREAT-SSO, Pisa, 4 May 2011

  13. Part 2 Trojan asteroids in the inner Solar System 12 GREAT-SSO, Pisa, 4 May 2011

  14. Trojans - Introduction There are about 570,958 known 1 asteroids in the Solar System Of these, there are:  Jupiter Trojans: 4832  Mars Trojans: 4 (predicted ~50)  Earth Trojans: 0 (predicted ~17) 1 as of April 18, 2011 (www.minorplanetcenter.org) 13 GREAT-SSO, Pisa, 4 May 2011

  15. What is a Trojan? Trojans are those asteroids which: • share an orbit with a planet, and • are located in regions around L4 and L5 Lagrangian points These have 1:1 mean motion resonance (coorbital), which only occurs if the semi-major axis is similar to the planet and the eccentricity must be close to e = 0 for them to remain in the Lagrangian region during their orbits and so be considered to be Trojans. 14 GREAT-SSO, Pisa, 4 May 2011

  16. Earth Trojans Earth Trojans (may) exist near the L4 and L5 Lagrangian points of Earth’s orbit. Known: 0 Predicted: 0.65 ± 0.12 (diam. > 1 km) 16.3 ± 3.0 (diam. > 100 m) (Morais & Morbidelli 2002) Known asteroids having a ≈1 AU (grey) compared to Regions in which a body may exist in co-orbital motion with a planet stable inclinations for Earth Trojans (red), from Morais & Morbidelli (2002) 15 GREAT-SSO, Pisa, 4 May 2011

  17. Earth Trojans Synthesis of orbit inclination model (Morais & Morbidelli 2002) and heliocentric longitude model (Tabachnik & Evans 2000) to identify probability regions Earth Trojan (L4) target field. Normalised probability contour for Earth Trojan bodies by Inclination and Heliocentric Longitude. >63% probability that Trojan will occupy this region. 16 GREAT-SSO, Pisa, 4 May 2011

  18. Earth Trojans Earth Trojans – Observing Constraints • Need to observe at elongations close to the Sun • Small observing window after sunset and before sunrise (Image: NASA) 17 GREAT-SSO, Pisa, 4 May 2011

  19. Earth Trojans Earth Trojans – Field survey options Option 1: Survey entire field Solid angle of field is 3490 deg 2 . Telescope Limiting Exp. FOV FOVs Time mag. Zadko R ~ 21 180s 0.15 deg 2 23267 1160h 3.5 deg 2 TAROT R ~ 18 60s 998 16.6h 5.7 deg 2 SkyMapper g ~ 21.9 110s 613 18.7h 8.0 deg 2 Catalina V ~ 20 30s 437 3.6h PTF 1.2m R ~ 20.6 60s 8.1 deg 2 431 7.2h Pan-STARRS R ~ 24 30s 7.0 deg 2 499 4.2h 9.6 deg 2 LSST r ~ 24.7 30s 364 3.0h 0.45 deg 2 GAIA V ~ 20 7756 Note 1 Note 1: GAIA to operate in continuous scanning mode Only possible to observe entire field with large survey telescope! Will take several days. 18 GREAT-SSO, Pisa, 4 May 2011

  20. Earth Trojans Earth Trojans – Field survey options Option 2: Survey field within inclination limits Solid angle of field is 1300 deg 2 . Telescope Limiting Exp. FOV FOVs Time Whole mag. field Zadko R ~ 21 180s 0.15 deg 2 8667 433h 1160h 3.5 deg 2 TAROT R ~ 18 60s 372 6.2h 16.6h 5.7 deg 2 SkyMapper g ~ 21.9 110s 228 7.0h 18.7h 8.0 deg 2 Catalina V ~ 20 30s 163 1.4h 3.6h PTF 1.2m R ~ 20.6 60s 8.1 deg 2 161 2.7h 7.2h Pan-STARRS R ~ 24 30s 7.0 deg 2 186 1.6h 4.2h 9.6 deg 2 LSST r ~ 24.7 30s 136 1.2h 3.0h 0.45 deg 2 GAIA V ~ 20 2889 Note 1 Note 1: GAIA to operate in continuous scanning mode Can be done in 1 day with large survey telescope. Requires pairs of observations, repeated at 3-month intervals.. 19 GREAT-SSO, Pisa, 4 May 2011

  21. Earth Trojans Earth Trojans – Field survey options Option 3: Survey in ecliptic plane ± 10 ° Solid angle of field is ~900 deg 2 Telescope Limiting Exp. FOV FOVs Time Whole mag. field Zadko R ~ 21 180s 0.15 deg 2 5840 292h 1160h 3.5 deg 2 TAROT R ~ 18 60s 257 4.3h 16.6h 5.7 deg 2 SkyMapper g ~ 21.9 110s 157 4.8h 18.7h 8.0 deg 2 Catalina V ~ 20 30s 112 56m 3.6h PTF 1.2m R ~ 20.6 60s 8.1 deg 2 111 111m 7.2h Pan-STARRS R ~ 24 30s 7.0 deg 2 128 64m 4.2h 9.6 deg 2 LSST r ~ 24.7 30s 94 47m 3.0h 0.45 deg 2 GAIA V ~ 20 400 • Look for Trojans crossing ecliptic plane • Requires 2 observing sessions per 2-3 weeks for half a year • Less time per session compared to whole field survey • Still requires large FOV telescope 20 GREAT-SSO, Pisa, 4 May 2011

  22. Earth Trojans Earth Trojans – Field survey options Option 4: Survey a swath of the field For a 10˚ swath, area ~90 - 140 deg 2 Telescope Limiting Exp. FOV FOVs Time mag. 590 – 930 29.5 – 46.5h Zadko R ~ 21 180s 0.15 deg 2 26 – 40 26 – 40m 3.5 deg 2 TAROT R ~ 18 60s 16 – 25 30 – 46m 5.7 deg 2 SkyMapper g ~ 21.9 110s 12 – 18 6 – 9m 8.0 deg 2 Catalina V ~ 20 30s 12 – 18 12 – 18m PTF 1.2m R ~ 20.6 60s 8.1 deg 2 13 – 20 7 – 10m Pan-STARRS R ~ 24 30s 7.0 deg 2 10 – 15 5 – 8m 9.6 deg 2 LSST r ~ 24.7 30s 0.45 deg 2 GAIA V ~ 20 200 - 300 • Use Earth’s revolution about Sun to sweep out field • Requires 2 observing sessions per week for up to a year • Minimal time per session compared to whole field survey • Observations made at end of twilight before/after primary science 21 GREAT-SSO, Pisa, 4 May 2011

  23. Earth Trojans – Variation in magnitude • Apparent magnitude for 1 km object ranges from 17.9 to 19.5 • Assumed albedo 0.20 • No atmospheric extinction Variation in apparent magnitude across field. Earth Trojan (L4) target field. Inverse square law dominant over phase angle. 22 GREAT-SSO, Pisa, 4 May 2011

  24. Mars Trojans Mars Trojans exist near the L4 and L5 Lagrangian points of Mars’ orbit. Known: 4 Predicted: ~50 (diam. > 1 km) (Tabachnik & Evans 1999) Inclinations of 72 known asteroids (grey) with 𝑏 ≈1.52 AU (similar to Mars) compared to prediction from Trojan model (red [L4] / blue [L5] lines), from Tabachnik and Evans (1999) 23 GREAT-SSO, Pisa, 4 May 2011

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend