math 20 probability

MATH 20: PROBABILITY Fundamental Theorems of Probability Theory - PowerPoint PPT Presentation

MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La


  1. MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La Large ge Numbers Nu XC 2020

  3. La Law of La Large ge Number bers frequency as interpretation of probability Β§ convergence of the sa sample m mea ean Β§ XC 2020

  4. LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR DISCRETE RAND NDOM OM VARIABL BLES discrete random variables XC 2020

  5. Let π‘Œ be a nonnegative discrete random variable with expected value 𝐹(π‘Œ) , and let This is a sample text. 𝜁 > 0 be any positive number. Then Insert your desired text here. This is a sample text. Insert your desired text here. π‘Œ : : nonnegative 𝑄(π‘Œ β‰₯ 𝜁) 𝐹(π‘Œ) 𝜁 Markov Ma 𝑸(𝒀 β‰₯ 𝜻) ≀ 𝑭(𝒀) inequ in quality ity 𝜻 XC 2020

  6. Proof Let π‘Œ be a po posi sitive discrete random variable with expected value 𝐹(π‘Œ) , and let 𝜁 > 0 be any positive number. 𝑸(𝒀 β‰₯ 𝜻) ≀ 𝑭(𝒀) 𝜻 + 𝒏(π’š) = 𝟐 𝑄 π‘Œ β‰₯ 𝜁 = + 𝑛(𝑦) π’š !"# 𝑭 𝒀 = + π’šπ’(π’š) β‰₯ + π’šπ’ π’š β‰₯ 𝜻 + 𝒏 π’š = πœ»π‘„ π‘Œ β‰₯ 𝜁 & π’šπ’(π’š) = 𝑭(𝒀) π’š π’š"𝜻 π’š"𝜻 π’š XC 2020

  7. Let π‘Œ be a discrete random variable with expected 𝜏 ' = π‘Š(π‘Œ) , value 𝜈 = 𝐹(π‘Œ) and variance and let 𝜁 > 0 be any positive number. Then This is a sample text. Insert your desired text here. This is a sample text. Insert your desired text here. π‘Œ : : not t necessarily 𝑸(|𝒀 βˆ’ 𝝂| nonne no nnegative ve β‰₯ 𝜻) 𝝉 πŸ‘ 𝜻 πŸ‘ Chebyshev Ch 𝑸(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) ≀ 𝝉 πŸ‘ inequalit in ity 𝜻 πŸ‘ XC 2020

  8. Proof Let X be a discrete random variable with expected value 𝜈 = 𝐹(π‘Œ) 𝜏 ' = π‘Š(π‘Œ) , and variance and let 𝜁 > 0 be any positive number. 𝑸(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) ≀ 𝝉 πŸ‘ 𝜻 πŸ‘ + 𝒏(π’š) = 𝟐 𝑄(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) = + 𝑛(𝑦) π’š |π’š)𝝂|"𝜻 𝜏 ' = π‘Š π‘Œ = + (𝑦 βˆ’ 𝜈) ' 𝑛(𝑦) β‰₯ 𝑦 βˆ’ 𝜈 ' 𝑛 𝑦 + ! !)+ "# (π’š βˆ’ 𝝂) πŸ‘ 𝒏(π’š) = 𝑾(𝒀) & β‰₯ 𝜁 ' 𝑛 𝑦 = 𝜁 ' 𝑄(|π‘Œ βˆ’ 𝜈| β‰₯ 𝜁) + π’š !)+ "# XC 2020

  9. Ma Markov 𝑸(𝒀 β‰₯ 𝜻) ≀ 𝑭(𝒀) in inequ quality ity 𝜻 π‘Œ : : nonnegative 𝑭(𝒀) : kn known Chebyshev Ch 𝑸(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) ≀ 𝝉 πŸ‘ inequalit in ity 𝜻 πŸ‘ π‘Œ : : not t necessarily 𝑭(𝒀) : kn known 𝑾(𝒀) : kn known no nonne nnegative ve XC 2020

  10. Example 1 Β§ Let π‘Œ be any random variable which takes on values 0, 1, 2, β‹― , π‘œ and has 𝐹(π‘Œ) = π‘Š (π‘Œ) = 1 . Show that for any positive integer 𝑙 , 𝑄(π‘Œ β‰₯ 𝑙 + 1) ≀ " # # . Ma Markov kov Inequality Ch Chebys byshev Inequality 𝑄(|π‘Œ βˆ’ 𝜈| β‰₯ 𝜁) ≀ 𝜏 $ 𝑄(π‘Œ β‰₯ 𝜁) ≀ 𝐹(π‘Œ) 𝜁 𝜁 $ XC 2020

  11. Example 1 Β§ Let π‘Œ be any random variable which takes on values 0, 1, 2, β‹― , π‘œ and has 𝐹(π‘Œ) = π‘Š (π‘Œ) = 1 . Show that for any positive integer 𝑙 , 𝑄(π‘Œ β‰₯ 𝑙 + 1) ≀ " # # . Ch Chebyshev Inequ quality 𝑄(|π‘Œ βˆ’ 𝜈| β‰₯ 𝜁) ≀ 𝜏 ' 𝜁 ' 𝜈 = 𝜏 ' = 1 , 𝜁 = 𝑙 𝑄 π‘Œ βˆ’ 1 β‰₯ 𝑙 = 𝑄(π‘Œ β‰₯ 𝑙 + 1) ≀ 1 𝑙 ' XC 2020

  12. Example 2 Β§ Choose π‘Œ with distribution βˆ’πœ 𝜁 . 𝑛 𝑦 = " " $ $ Ch Chebyshev Inequ quality 𝑄(|π‘Œ βˆ’ 𝜈| β‰₯ 𝜁) ≀ 𝜏 ' 𝑄 π‘Œ β‰₯ 𝜁 = 1 𝜁 ' 𝜈 = 0 , 𝜏 ' = 𝜁 ' 𝑄 π‘Œ β‰₯ 𝜁 ≀ 𝜁 ' 𝜁 ' = 1 XC 2020

  13. Law of Large Numbers Β§ Let π‘Œ " , π‘Œ $ , β‹― , π‘Œ % be an independent trials process, with same fi nite expected value 𝜏 $ = π‘Š(π‘Œ & ) and fi nite variance & ) . 𝜈 = 𝐹(π‘Œ Β§ Let 𝑇 % = π‘Œ " + π‘Œ $ + β‹― + π‘Œ % . Then for any 𝜁 > 0 , Large 𝑄(| ' $ % βˆ’ 𝜈| β‰₯ 𝜁) β†’ 0 , as π‘œ β†’ +∞ . Numbers Β§ Equivalently, %β†’) 𝑄( ' $ % βˆ’ 𝜈 < 𝜁) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020

  14. Law of Large Numbers Β§ Let π‘Œ " , π‘Œ $ , β‹― , π‘Œ % be an independent trials process with 𝐹 π‘Œ & = 𝜈 and π‘Š π‘Œ & = 𝜏 $ . Β§ Let 𝑇 % = π‘Œ " + π‘Œ $ + β‹― + π‘Œ % be the sum, π‘œ β†’ +∞ 𝐡 % = ' $ and % be the average. Then 𝐹 𝐡 % = 𝜈 = π‘Š 𝐡 % β†’ 0 𝐸 𝐡 % β†’ 0 π‘Š 𝐡 % = * # 𝐸 𝐡 % = * % , = % XC 2020

  15. Proof Let π‘Œ . , π‘Œ ' , β‹― , π‘Œ - be an independent trials process, with same 𝜏 ' = π‘Š(π‘Œ fi nite expected value 𝜈 = 𝐹(π‘Œ / ) and fi nite variance / ) . 𝑄(| 𝑇 % π‘œ βˆ’ 𝜈| β‰₯ 𝜁) β†’ 0 , as π‘œ β†’ +∞ . 𝑭 𝑻 𝒐 = 𝝂 ≀ 𝜏 ' 𝑇 - 𝒐 𝑄 π‘œ βˆ’ 𝜈 β‰₯ 𝜁 π‘œπœ ' = 𝝉 πŸ‘ 𝑾 𝑻 𝒐 π‘œ β†’ +∞ 𝒐 𝒐 𝜏 ' 𝑸(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) ≀ 𝝉 πŸ‘ π‘œπœ ' β†’ 0 𝜻 πŸ‘ XC 2020

  16. Law of Large Numbers con convergence ce of of the the sa sample me mean (Strong) Law of Large 𝑇 % Numbers 𝑄 lim π‘œ = 𝜈 = 1 %β†’) (Weak) %β†’) 𝑄( 𝑇 % Law of Large lim π‘œ βˆ’ 𝜈 < 𝜁) = 1 Numbers XC 2020

  17. Example 3 Consider the general Bernoulli trial process. Β§ As usual, we let π‘Œ = 1 if the outcome is a success and 0 if it is a failure. Β§ Expect cted value 𝑭(𝒀) I 𝑦𝑛(𝑦) = 1Γ—π‘ž + 0Γ— 1 βˆ’ π‘ž = π‘ž Bernoulli Ber tria t ial +∈- π‘ž, π‘Œ = 1 𝑛 𝑦 = L 1 βˆ’ π‘ž, π‘Œ = 0 Variance ce π‘Š π‘Œ 𝐹 π‘Œ $ βˆ’ 𝜈 $ = π‘ž βˆ’ π‘ž $ = π‘ž(1 βˆ’ π‘ž) XC 2020

  18. Example 3 Now consider π‘œ Bernoulli trials. Β§ ' $ Then 𝑇 % = βˆ‘ ./" % π‘Œ . is the number of successes in π‘œ trials and 𝜈 = 𝐹 = 𝐹 π‘Œ . = π‘ž . Β§ % La Law o of La Large N Numbers -β†’2 𝑄( 𝑇 - lim π‘œ βˆ’ 𝜈 < 𝜁) = 1 𝜈 = π‘ž -β†’2 𝑄( 𝑇 - lim π‘œ βˆ’ π‘ž < 𝜁) = 1 XC 2020

  19. Coin Tossing π‘œ β†’ +∞ 𝜈 = 1 2 π‘Œ " + π‘Œ $ + β‹― + π‘Œ % π‘œ XC 2020

  20. Dice Rolling π‘œ β†’ +∞ 𝜈 = 7 2 π‘Œ " + π‘Œ $ + β‹― + π‘Œ % π‘œ XC 2020

  21. Bernoulli Trials We can start with a random experiment about which little can be predicted and, by taking averages, obtain an experiment in which the outcome can be predicted with a high degree of certainty. XC 2020

  22. 𝐡 % = ' $ 𝑇 % = π‘Œ " + π‘Œ $ + β‹― + π‘Œ % , % Law of La La Large ge Number bers π‘Š 𝐡 % = * # 𝐹 𝐡 % = 𝜈 , % frequency as interpretation of probability Β§ convergence of the sa sample mea m ean Β§ ≀ 𝜏 $ 𝑇 % 𝑄 π‘œ βˆ’ 𝜈 β‰₯ 𝜁 π‘œπœ $ XC 2020

  23. LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR CONT ONTINU NUOU OUS RAND NDOM OM VARIABL BLES continuous random variables XC 2020

  24. Let π‘Œ be a continuous random variable with density function finite fi te exp xpecte ted 𝑔(𝑦) . This is a sample text. va value Suppose π‘Œ has a finite Insert your desired text expected value 𝜈 = 𝐹(π‘Œ) and here. This is a sample text. 𝜏 ' = π‘Š(π‘Œ) . fintite variance Insert your desired text Then for any positive 𝜁 > 0 we here. fi finite te vari riance have 𝑸(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) 𝝉 πŸ‘ 𝜻 πŸ‘ Chebyshev Ch 𝑸(|𝒀 βˆ’ 𝝂| β‰₯ 𝜻) ≀ 𝝉 πŸ‘ inequalit in ity 𝜻 πŸ‘ XC 2020

  25. Law of Large Numbers Β§ Let π‘Œ " , π‘Œ $ , β‹― , π‘Œ % be an independent trials process with a continuous density function 𝑔 , fi ni nite te expected value 𝜈 and fi ni nite te variance 𝜏 $ . Β§ Let 𝑇 % = π‘Œ " + π‘Œ $ + β‹― + π‘Œ % . Then for any 𝜁 > 0 , 𝑄(| ' $ % βˆ’ 𝜈| β‰₯ 𝜁) β†’ 0 , as π‘œ β†’ +∞ . Β§ Equivalently, %β†’) 𝑄( ' $ % βˆ’ 𝜈 < 𝜁) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020

  26. Example 4 Suppose we choose at random π‘œ numbers from the interval [0, 1] with uniform Β§ distribution. Let π‘Œ . describes the 𝑗 th choice. Β§ Expect cted value 𝑭(𝒀) 𝐹 π‘Œ = 1 2 𝑏 + 𝑐 = 1 2 0 + 1 = 1 2 Un Unifor orm distribu bution on 1 𝑔 𝑦 = 𝑐 βˆ’ 𝑏 , 𝑏 ≀ 𝑦 ≀ 𝑐 Variance ce π‘Š π‘Œ π‘Š π‘Œ = 𝐹 π‘Œ $ βˆ’ 𝜈 $ 𝑔 𝑦 = 1, 0 ≀ 𝑦 ≀ 1 = 1 12 (𝑐 βˆ’ 𝑏) $ = 1 12 (1 βˆ’ 0) $ = 1 12 XC 2020

  27. Example 4 Suppose we choose at random π‘œ numbers from the interval [0, 1] with uniform Β§ distribution. Let π‘Œ . describes the 𝑗 th choice and 𝑇 % = βˆ‘ ./" % π‘Œ . . Β§ Expect cted value Ch Chebyshev Inequ quality 𝑭(𝑇 % π‘œ ) = 1 𝑄(|π‘Œ βˆ’ 𝜈| β‰₯ 𝜁) ≀ 𝜏 $ 2 𝜁 $ 𝜈 = " $ , 𝜏 $ = " "$ Variance ce 𝑇 % π‘œ βˆ’ 1 1 𝑄 2 β‰₯ 𝜁 ≀ 12π‘œπœ $ π‘Š 𝑇 % 1 = π‘œ 12π‘œ XC 2020

  28. XC 2020

Recommend


More recommend