math 20 probability
play

MATH 20: PROBABILITY Fundamental Theorems of Probability Theory - PowerPoint PPT Presentation

MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La


  1. MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La Large ge Numbers Nu XC 2020

  3. La Law of La Large ge Number bers frequency as interpretation of probability ยง convergence of the sa sample m mea ean ยง XC 2020

  4. LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR DISCRETE RAND NDOM OM VARIABL BLES discrete random variables XC 2020

  5. Let ๐‘Œ be a nonnegative discrete random variable with expected value ๐น(๐‘Œ) , and let This is a sample text. ๐œ > 0 be any positive number. Then Insert your desired text here. This is a sample text. Insert your desired text here. ๐‘Œ : : nonnegative ๐‘„(๐‘Œ โ‰ฅ ๐œ) ๐น(๐‘Œ) ๐œ Markov Ma ๐‘ธ(๐’€ โ‰ฅ ๐œป) โ‰ค ๐‘ญ(๐’€) inequ in quality ity ๐œป XC 2020

  6. Proof Let ๐‘Œ be a po posi sitive discrete random variable with expected value ๐น(๐‘Œ) , and let ๐œ > 0 be any positive number. ๐‘ธ(๐’€ โ‰ฅ ๐œป) โ‰ค ๐‘ญ(๐’€) ๐œป + ๐’(๐’š) = ๐Ÿ ๐‘„ ๐‘Œ โ‰ฅ ๐œ = + ๐‘›(๐‘ฆ) ๐’š !"# ๐‘ญ ๐’€ = + ๐’š๐’(๐’š) โ‰ฅ + ๐’š๐’ ๐’š โ‰ฅ ๐œป + ๐’ ๐’š = ๐œป๐‘„ ๐‘Œ โ‰ฅ ๐œ & ๐’š๐’(๐’š) = ๐‘ญ(๐’€) ๐’š ๐’š"๐œป ๐’š"๐œป ๐’š XC 2020

  7. Let ๐‘Œ be a discrete random variable with expected ๐œ ' = ๐‘Š(๐‘Œ) , value ๐œˆ = ๐น(๐‘Œ) and variance and let ๐œ > 0 be any positive number. Then This is a sample text. Insert your desired text here. This is a sample text. Insert your desired text here. ๐‘Œ : : not t necessarily ๐‘ธ(|๐’€ โˆ’ ๐‚| nonne no nnegative ve โ‰ฅ ๐œป) ๐‰ ๐Ÿ‘ ๐œป ๐Ÿ‘ Chebyshev Ch ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ inequalit in ity ๐œป ๐Ÿ‘ XC 2020

  8. Proof Let X be a discrete random variable with expected value ๐œˆ = ๐น(๐‘Œ) ๐œ ' = ๐‘Š(๐‘Œ) , and variance and let ๐œ > 0 be any positive number. ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ ๐œป ๐Ÿ‘ + ๐’(๐’š) = ๐Ÿ ๐‘„(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) = + ๐‘›(๐‘ฆ) ๐’š |๐’š)๐‚|"๐œป ๐œ ' = ๐‘Š ๐‘Œ = + (๐‘ฆ โˆ’ ๐œˆ) ' ๐‘›(๐‘ฆ) โ‰ฅ ๐‘ฆ โˆ’ ๐œˆ ' ๐‘› ๐‘ฆ + ! !)+ "# (๐’š โˆ’ ๐‚) ๐Ÿ‘ ๐’(๐’š) = ๐‘พ(๐’€) & โ‰ฅ ๐œ ' ๐‘› ๐‘ฆ = ๐œ ' ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) + ๐’š !)+ "# XC 2020

  9. Ma Markov ๐‘ธ(๐’€ โ‰ฅ ๐œป) โ‰ค ๐‘ญ(๐’€) in inequ quality ity ๐œป ๐‘Œ : : nonnegative ๐‘ญ(๐’€) : kn known Chebyshev Ch ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ inequalit in ity ๐œป ๐Ÿ‘ ๐‘Œ : : not t necessarily ๐‘ญ(๐’€) : kn known ๐‘พ(๐’€) : kn known no nonne nnegative ve XC 2020

  10. Example 1 ยง Let ๐‘Œ be any random variable which takes on values 0, 1, 2, โ‹ฏ , ๐‘œ and has ๐น(๐‘Œ) = ๐‘Š (๐‘Œ) = 1 . Show that for any positive integer ๐‘™ , ๐‘„(๐‘Œ โ‰ฅ ๐‘™ + 1) โ‰ค " # # . Ma Markov kov Inequality Ch Chebys byshev Inequality ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ $ ๐‘„(๐‘Œ โ‰ฅ ๐œ) โ‰ค ๐น(๐‘Œ) ๐œ ๐œ $ XC 2020

  11. Example 1 ยง Let ๐‘Œ be any random variable which takes on values 0, 1, 2, โ‹ฏ , ๐‘œ and has ๐น(๐‘Œ) = ๐‘Š (๐‘Œ) = 1 . Show that for any positive integer ๐‘™ , ๐‘„(๐‘Œ โ‰ฅ ๐‘™ + 1) โ‰ค " # # . Ch Chebyshev Inequ quality ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ ' ๐œ ' ๐œˆ = ๐œ ' = 1 , ๐œ = ๐‘™ ๐‘„ ๐‘Œ โˆ’ 1 โ‰ฅ ๐‘™ = ๐‘„(๐‘Œ โ‰ฅ ๐‘™ + 1) โ‰ค 1 ๐‘™ ' XC 2020

  12. Example 2 ยง Choose ๐‘Œ with distribution โˆ’๐œ ๐œ . ๐‘› ๐‘ฆ = " " $ $ Ch Chebyshev Inequ quality ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ ' ๐‘„ ๐‘Œ โ‰ฅ ๐œ = 1 ๐œ ' ๐œˆ = 0 , ๐œ ' = ๐œ ' ๐‘„ ๐‘Œ โ‰ฅ ๐œ โ‰ค ๐œ ' ๐œ ' = 1 XC 2020

  13. Law of Large Numbers ยง Let ๐‘Œ " , ๐‘Œ $ , โ‹ฏ , ๐‘Œ % be an independent trials process, with same fi nite expected value ๐œ $ = ๐‘Š(๐‘Œ & ) and fi nite variance & ) . ๐œˆ = ๐น(๐‘Œ ยง Let ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % . Then for any ๐œ > 0 , Large ๐‘„(| ' $ % โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ†’ 0 , as ๐‘œ โ†’ +โˆž . Numbers ยง Equivalently, %โ†’) ๐‘„( ' $ % โˆ’ ๐œˆ < ๐œ) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020

  14. Law of Large Numbers ยง Let ๐‘Œ " , ๐‘Œ $ , โ‹ฏ , ๐‘Œ % be an independent trials process with ๐น ๐‘Œ & = ๐œˆ and ๐‘Š ๐‘Œ & = ๐œ $ . ยง Let ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % be the sum, ๐‘œ โ†’ +โˆž ๐ต % = ' $ and % be the average. Then ๐น ๐ต % = ๐œˆ = ๐‘Š ๐ต % โ†’ 0 ๐ธ ๐ต % โ†’ 0 ๐‘Š ๐ต % = * # ๐ธ ๐ต % = * % , = % XC 2020

  15. Proof Let ๐‘Œ . , ๐‘Œ ' , โ‹ฏ , ๐‘Œ - be an independent trials process, with same ๐œ ' = ๐‘Š(๐‘Œ fi nite expected value ๐œˆ = ๐น(๐‘Œ / ) and fi nite variance / ) . ๐‘„(| ๐‘‡ % ๐‘œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ†’ 0 , as ๐‘œ โ†’ +โˆž . ๐‘ญ ๐‘ป ๐’ = ๐‚ โ‰ค ๐œ ' ๐‘‡ - ๐’ ๐‘„ ๐‘œ โˆ’ ๐œˆ โ‰ฅ ๐œ ๐‘œ๐œ ' = ๐‰ ๐Ÿ‘ ๐‘พ ๐‘ป ๐’ ๐‘œ โ†’ +โˆž ๐’ ๐’ ๐œ ' ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ ๐‘œ๐œ ' โ†’ 0 ๐œป ๐Ÿ‘ XC 2020

  16. Law of Large Numbers con convergence ce of of the the sa sample me mean (Strong) Law of Large ๐‘‡ % Numbers ๐‘„ lim ๐‘œ = ๐œˆ = 1 %โ†’) (Weak) %โ†’) ๐‘„( ๐‘‡ % Law of Large lim ๐‘œ โˆ’ ๐œˆ < ๐œ) = 1 Numbers XC 2020

  17. Example 3 Consider the general Bernoulli trial process. ยง As usual, we let ๐‘Œ = 1 if the outcome is a success and 0 if it is a failure. ยง Expect cted value ๐‘ญ(๐’€) I ๐‘ฆ๐‘›(๐‘ฆ) = 1ร—๐‘ž + 0ร— 1 โˆ’ ๐‘ž = ๐‘ž Bernoulli Ber tria t ial +โˆˆ- ๐‘ž, ๐‘Œ = 1 ๐‘› ๐‘ฆ = L 1 โˆ’ ๐‘ž, ๐‘Œ = 0 Variance ce ๐‘Š ๐‘Œ ๐น ๐‘Œ $ โˆ’ ๐œˆ $ = ๐‘ž โˆ’ ๐‘ž $ = ๐‘ž(1 โˆ’ ๐‘ž) XC 2020

  18. Example 3 Now consider ๐‘œ Bernoulli trials. ยง ' $ Then ๐‘‡ % = โˆ‘ ./" % ๐‘Œ . is the number of successes in ๐‘œ trials and ๐œˆ = ๐น = ๐น ๐‘Œ . = ๐‘ž . ยง % La Law o of La Large N Numbers -โ†’2 ๐‘„( ๐‘‡ - lim ๐‘œ โˆ’ ๐œˆ < ๐œ) = 1 ๐œˆ = ๐‘ž -โ†’2 ๐‘„( ๐‘‡ - lim ๐‘œ โˆ’ ๐‘ž < ๐œ) = 1 XC 2020

  19. Coin Tossing ๐‘œ โ†’ +โˆž ๐œˆ = 1 2 ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % ๐‘œ XC 2020

  20. Dice Rolling ๐‘œ โ†’ +โˆž ๐œˆ = 7 2 ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % ๐‘œ XC 2020

  21. Bernoulli Trials We can start with a random experiment about which little can be predicted and, by taking averages, obtain an experiment in which the outcome can be predicted with a high degree of certainty. XC 2020

  22. ๐ต % = ' $ ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % , % Law of La La Large ge Number bers ๐‘Š ๐ต % = * # ๐น ๐ต % = ๐œˆ , % frequency as interpretation of probability ยง convergence of the sa sample mea m ean ยง โ‰ค ๐œ $ ๐‘‡ % ๐‘„ ๐‘œ โˆ’ ๐œˆ โ‰ฅ ๐œ ๐‘œ๐œ $ XC 2020

  23. LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR CONT ONTINU NUOU OUS RAND NDOM OM VARIABL BLES continuous random variables XC 2020

  24. Let ๐‘Œ be a continuous random variable with density function finite fi te exp xpecte ted ๐‘”(๐‘ฆ) . This is a sample text. va value Suppose ๐‘Œ has a finite Insert your desired text expected value ๐œˆ = ๐น(๐‘Œ) and here. This is a sample text. ๐œ ' = ๐‘Š(๐‘Œ) . fintite variance Insert your desired text Then for any positive ๐œ > 0 we here. fi finite te vari riance have ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) ๐‰ ๐Ÿ‘ ๐œป ๐Ÿ‘ Chebyshev Ch ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ inequalit in ity ๐œป ๐Ÿ‘ XC 2020

  25. Law of Large Numbers ยง Let ๐‘Œ " , ๐‘Œ $ , โ‹ฏ , ๐‘Œ % be an independent trials process with a continuous density function ๐‘” , fi ni nite te expected value ๐œˆ and fi ni nite te variance ๐œ $ . ยง Let ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % . Then for any ๐œ > 0 , ๐‘„(| ' $ % โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ†’ 0 , as ๐‘œ โ†’ +โˆž . ยง Equivalently, %โ†’) ๐‘„( ' $ % โˆ’ ๐œˆ < ๐œ) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020

  26. Example 4 Suppose we choose at random ๐‘œ numbers from the interval [0, 1] with uniform ยง distribution. Let ๐‘Œ . describes the ๐‘— th choice. ยง Expect cted value ๐‘ญ(๐’€) ๐น ๐‘Œ = 1 2 ๐‘ + ๐‘ = 1 2 0 + 1 = 1 2 Un Unifor orm distribu bution on 1 ๐‘” ๐‘ฆ = ๐‘ โˆ’ ๐‘ , ๐‘ โ‰ค ๐‘ฆ โ‰ค ๐‘ Variance ce ๐‘Š ๐‘Œ ๐‘Š ๐‘Œ = ๐น ๐‘Œ $ โˆ’ ๐œˆ $ ๐‘” ๐‘ฆ = 1, 0 โ‰ค ๐‘ฆ โ‰ค 1 = 1 12 (๐‘ โˆ’ ๐‘) $ = 1 12 (1 โˆ’ 0) $ = 1 12 XC 2020

  27. Example 4 Suppose we choose at random ๐‘œ numbers from the interval [0, 1] with uniform ยง distribution. Let ๐‘Œ . describes the ๐‘— th choice and ๐‘‡ % = โˆ‘ ./" % ๐‘Œ . . ยง Expect cted value Ch Chebyshev Inequ quality ๐‘ญ(๐‘‡ % ๐‘œ ) = 1 ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ $ 2 ๐œ $ ๐œˆ = " $ , ๐œ $ = " "$ Variance ce ๐‘‡ % ๐‘œ โˆ’ 1 1 ๐‘„ 2 โ‰ฅ ๐œ โ‰ค 12๐‘œ๐œ $ ๐‘Š ๐‘‡ % 1 = ๐‘œ 12๐‘œ XC 2020

  28. XC 2020

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend