math 20 probability

MATH 20: PROBABILITY Generating Functions Xingru Chen - PowerPoint PPT Presentation

MATH 20: PROBABILITY Generating Functions Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 di distri ribution Random Variable Password Lo Log I In Forget Password XC 2020 di distri ribution Random Variable Expected Value


  1. MATH 20: PROBABILITY Generating Functions Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. di distri ribution Random Variable Password Lo Log I In Forget Password XC 2020

  3. di distri ribution Random Variable Expected Value & Variance Lo Log I In Forget Password XC 2020

  4. Binomial Distribution and Normal Distribution Binomia Bin ial D Dist istrib ibutio ion Norma Nor mal Distribution on 𝐹(π‘Œ) & π‘Š(π‘Œ) 𝑐 π‘œ, π‘ž, 𝑙 = π‘œ 1 𝑙 π‘ž ! π‘Ÿ "#! π‘œπ‘ž = 𝜈 𝑓 # %#& ! /() ! Β§ 𝑔 $ 𝑦 = π‘œπ‘ž 1 βˆ’ π‘ž = 𝜏 ( 2𝜌𝜏 Β§ XC 2020

  5. di distri ribution Random Variable Moments Lo Log I In Forget Password XC 2020

  6. GENERATING FUNCTIONS discrete distribution XC 2020

  7. Moments Β§ If π‘Œ is a random variable with range 𝑦 * , 𝑦 ( , β‹― of at most countable size, and the distribution function π‘ž = π‘ž $ , we introduce the moments of π‘Œ , which are numbers defined as follows: 𝜈 ! = 𝑙 th moment of π‘Œ = 𝐹 π‘Œ ! ! π‘ž(𝑦 + ) , -. 𝑦 + = βˆ‘ +,* provided the sum converges. Here π‘ž 𝑦 + = 𝑄(π‘Œ = 𝑦 + ) . ? 𝜈 ! = β‹― XC 2020

  8. 𝑙 th moment of π‘Œ 𝜈 $ = 1 = &' " π‘ž(𝑦 # ) 𝜈 " = 𝐹 π‘Œ " = * 𝑦 # #$% &' 𝜈 ! = 𝐹 1 = * π‘ž(𝑦 # ) 𝜈 % = β‹― ? #$% &' 𝜈 % = 𝐹 π‘Œ = * 𝑦 # π‘ž(𝑦 # ) #$% &' 𝜈 & = β‹― 𝜈 ( = 𝐹 π‘Œ ( = * ( π‘ž(𝑦 # ) ? 𝑦 # #$% XC 2020

  9. Expected Value & Variance 𝑙 th moment of π‘Œ 𝜈 " = 𝐹 π‘Œ " &' " π‘ž(𝑦 # ) = * 𝑦 # Expe pecte ted Value ue #$% 𝜏 & = β‹― 𝜈 % = 𝐹 π‘Œ &' = * 𝑦 # π‘ž(𝑦 # ) 𝜈 = β‹― Variance Va #$% 𝜈 ( = 𝐹 π‘Œ ( &' ( π‘ž(𝑦 # ) = * 𝑦 # #$% XC 2020

  10. Expected Value & Variance 𝑙 th moment of π‘Œ 𝜈 " = 𝐹 π‘Œ " &' " π‘ž(𝑦 # ) = * 𝑦 # Expe pecte ted Value ue #$% 𝜏 & = 𝜈 & βˆ’ 𝜈 % & 𝜈 % = 𝐹 π‘Œ &' = * 𝑦 # π‘ž(𝑦 # ) 𝜈 = 𝜈 % Va Variance #$% 𝜈 = 𝜈 % 𝜈 ( = 𝐹 π‘Œ ( &' ( π‘ž(𝑦 # ) = * 𝑦 # #$% XC 2020

  11. Moment Generating Functions Β§ We introduce a new variable 𝑒, and de fi ne a function 𝑕(𝑒) as follows: Ex Expect cted val alue 𝑭 𝝔(𝒀) &' 𝑓 !( ! π‘ž(𝑦 # ) . 𝑕 𝑒 = 𝐹 𝑓 !" = βˆ‘ #$% & 𝜚(𝑦)𝑛(𝑦) Β§ We call 𝑕(𝑒) the moment generating function for π‘Œ , and think of it as a convenient bookkeeping device for "∈$ describing the moments of π‘Œ . &' π‘Œ " 𝑒 " &' 𝐹(π‘Œ " )𝑒 " &' 𝜈 " 𝑒 " Taylor 𝑕 𝑒 = 𝐹 𝑓 )* = 𝐹 = * = * = * Expansion 𝑙! 𝑙! 𝑙! "$! "$! "$! XC 2020

  12. Moment Generating Functions Β§ If we differentiate 𝑕(𝑒) π‘œ times and then set 𝑒 = 0 , we get 𝜈 " . &' 𝜈 " 𝑒 " &' 𝑕 𝑒 = 𝐹 𝑓 )* = * 𝑓 )+ ! π‘ž(𝑦 # ) = * = 𝑙! #$% "$! &' 𝜈 " 𝑒 " &' 𝑙! 𝜈 " 𝑒 "-, &' 𝜈 " 𝑒 "-, &' 𝜈 " 𝑒 "-, 𝑒𝑒 , 𝑕 𝑒 = 𝑒 , 𝑒 , 𝑒 , 𝑒𝑒 , * = * 𝑙! 𝑙 βˆ’ π‘œ ! = * 𝑒𝑒 , 𝑕 𝑒 | )$! = * 𝑙 βˆ’ π‘œ ! | )$! = 𝜈 , 𝑙! 𝑙 βˆ’ π‘œ ! "$! "$, "$, "$, 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , XC 2020

  13. Uniform Distribution Ra Random vari riable le range: 1, 2, 3, β‹― , π‘œ π‘ž * π‘˜ = % distribution function: , Generating funct ction on , 1 *+ 𝜈 , 𝑒 , *+ π‘œ 𝑓 )# = 1 π‘œ 𝑓 ) + 𝑓 () + 𝑓 .) + β‹― + 𝑓 ,) 𝑕 𝑒 = 𝐹 𝑓 %& = & 𝑕 𝑒 = * 𝑓 %" ! π‘ž(𝑦 ' ) = & = 𝑙! '() ,(- #$% / " (/ #" -%) ,(/ " -%) . = 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , XC 2020

  14. Uniform Distribution Random Ra vari riable le range: 1, 2, 3, β‹― , π‘œ % distribution function: π‘ž * π‘˜ = , Generating funct ction on / " (/ #" -%) , 𝑓 )# = % , ,(/ " -%) . 𝑕 𝑒 = βˆ‘ #$% *+ 𝜈 , 𝑒 , *+ 𝑕 𝑒 = 𝐹 𝑓 %& = & 𝑓 %" ! π‘ž(𝑦 ' ) = & = 𝑙! Mom Moments '() ,(- 𝜈 % = 𝑕 2 0 = % ,&% ( . , 1 + 2 + 3 + β‹― + π‘œ = 𝑕 , 0 = 𝑒 , 𝜈 ( = 𝑕 22 0 = , 1 + 4 + 9 + β‹― + π‘œ ( = % (,&%)((,&%) . = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , 3 XC 2020

  15. Uniform Distribution Ra Random vari riable le range: 1, 2, 3, β‹― , π‘œ % distribution function: π‘ž * π‘˜ = , Generating funct ction on / " (/ #" -%) , 𝑓 )# = % , ,(/ " -%) . 𝑕 𝑒 = βˆ‘ #$% Mom Moments 𝜈 % = 𝑕 2 0 = % ,&% ( . , 1 + 2 + 3 + β‹― + π‘œ = 𝜈 ( = 𝑕 22 0 = , 1 + 4 + 9 + β‹― + π‘œ ( = % (,&%)((,&%) . 3 𝜈 = 𝜈 * Expect cted value & variance ce 𝜏 ( = 𝜈 ( βˆ’ 𝜈 * ( 𝜈 = 𝜈 % = π‘œ + 1 . 2 , $ -% 𝜏 ( = 𝜈 ( βˆ’ 𝜈 % ( = %( . XC 2020

  16. Binomial Distribution Random Ra vari riable le range: 0, 1, 2, 3, β‹― , π‘œ , distribution function: π‘ž * π‘˜ = # π‘ž # π‘Ÿ ,-# Generating funct ction on , *+ 𝜈 , 𝑒 , *+ 𝑓 )# π‘œ π‘˜ π‘ž # π‘Ÿ ,-# = 𝑕 𝑒 = 𝐹 𝑓 %& = & 𝑕 𝑒 = * 𝑓 %" ! π‘ž(𝑦 ' ) = & = 𝑙! '() ,(- #$% # (π‘žπ‘“ ) ) # π‘Ÿ ,-# = (π‘žπ‘“ ) + π‘Ÿ) , . , , βˆ‘ #$% 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , XC 2020

  17. Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, β‹― , π‘œ , distribution function: π‘ž * π‘˜ = # π‘ž # π‘Ÿ ,-# Generating funct ction on # π‘ž # π‘Ÿ ,-# = (π‘žπ‘“ ) + π‘Ÿ) , . , , 𝑓 )# 𝑕 𝑒 = βˆ‘ #$% *+ 𝜈 , 𝑒 , *+ 𝑕 𝑒 = 𝐹 𝑓 %& = & 𝑓 %" ! π‘ž(𝑦 ' ) = & = 𝑙! Moments Mom '() ,(- 𝜈 % = 𝑕 2 0 = π‘œ(π‘žπ‘“ ) + π‘Ÿ) ,-% π‘žπ‘“ ) | )$! = π‘œπ‘ž . 𝜈 ( = 𝑕 22 0 = π‘œ π‘œ βˆ’ 1 π‘ž ( + π‘œπ‘ž . 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , XC 2020

  18. Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, β‹― , π‘œ , distribution function: π‘ž * π‘˜ = # π‘ž # π‘Ÿ ,-# Generating funct ction on # π‘ž # π‘Ÿ ,-# = (π‘žπ‘“ ) + π‘Ÿ) , . , , 𝑓 )# 𝑕 𝑒 = βˆ‘ #$% Mom Moments 𝜈 % = 𝑕 2 0 = π‘œπ‘ž . 𝜈 ( = 𝑕 22 0 = π‘œ π‘œ βˆ’ 1 π‘ž ( + π‘œπ‘ž . 𝜈 = 𝜈 * Expect cted value & variance ce 𝜏 ( = 𝜈 ( βˆ’ 𝜈 * 𝜈 = 𝜈 % = π‘œπ‘ž. ( 𝜏 ( = 𝜈 ( βˆ’ 𝜈 % ( = π‘œπ‘ž(1 βˆ’ π‘ž) . XC 2020

  19. Geometric Distribution Ra Random vari riable le range: 1, 2, 3, β‹― , π‘œ distribution function: π‘ž * π‘˜ = π‘Ÿ #-% π‘ž *+ 𝜈 , 𝑒 , *+ 𝑕 𝑒 = 𝐹 𝑓 %& = & = 𝑓 %" ! π‘ž(𝑦 ' ) = & 𝑙! Generating funct ction on '() ,(- 4/ " , %-5/ " . 𝑓 )# π‘Ÿ #-% π‘ž = 𝑕 𝑒 = βˆ‘ #$% Moments Mom 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , 4/ " 𝜈 % = 𝑕 2 0 = % 4 . (%-5/ " ) $ | )$! = 4/ " &45/ $" 𝜈 ( = 𝑕 22 0 = %&5 4 $ . (%-5/ " ) % | )$! = Expect cted value & variance ce 𝜈 = 𝜈 * 𝜈 = 𝜈 % = 1 𝜏 ( = 𝜈 ( βˆ’ 𝜈 * ( π‘ž . 𝜏 ( = 𝜈 ( βˆ’ 𝜈 % ( = 5 4 $ . XC 2020

  20. Poisson Distribution Ra Random vari riable le range: 0, 1, 2, 3, β‹― , π‘œ π‘ž * π‘˜ = 𝑓 -6 6 ! distribution function: #! Generating funct ction on 𝑓 )# 𝑓 -6 6 ! (6/ " ) ! #! = 𝑓 -6 βˆ‘ #$% = 𝑓 6(/ " -%) . , , 𝑕 𝑒 = βˆ‘ #$% #! Mom Moments 𝜈 % = 𝑕 2 0 = 𝑓 6(/ " -%) πœ‡π‘“ ) | )$! = πœ‡ . 𝜈 ( = 𝑕 22 0 = 𝑓 6(/ " -%) πœ‡ ( 𝑓 () + πœ‡π‘“ ) | )$! = πœ‡ ( + πœ‡ . *+ 𝜈 , 𝑒 , *+ 𝑕 𝑒 = 𝐹 𝑓 %& = & 𝑓 %" ! π‘ž(𝑦 ' ) = & = 𝑙! '() ,(- Expect cted value & variance ce 𝜈 = 𝜈 % = πœ‡. 𝜏 ( = 𝜈 ( βˆ’ 𝜈 % ( = πœ‡. 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , XC 2020

  21. Unifor Un orm 𝑄 π‘Œ = 𝑙 = 1 π‘Š π‘Œ = " ! #* 𝐹 π‘Œ = "-* ( , π‘œ *( Bin Binomia ial 𝑐 π‘œ, π‘ž, 𝑙 = π‘œ 𝐹 π‘Œ = π‘œπ‘ž , π‘Š π‘Œ = π‘œπ‘žπ‘Ÿ 𝑙 π‘ž ! π‘Ÿ "#! Geometric Ge 𝐹 π‘Œ = * π‘Š π‘Œ = *#/ / , 𝑄 π‘ˆ = π‘œ = π‘Ÿ "#* π‘ž / ! Po Poisson 𝑄 π‘Œ = 𝑙 = πœ‡ ! 𝐹 π‘Œ = πœ‡ , π‘Š π‘Œ = πœ‡ 𝑙! 𝑓 #0 XC 2020

  22. Unifor Un orm 𝑕 𝑒 = 𝑓 1 (𝑓 "1 βˆ’ 1) 𝑄 π‘Œ = 𝑙 = 1 π‘œ(𝑓 1 βˆ’ 1) π‘œ Bin Binomia ial 𝑐 π‘œ, π‘ž, 𝑙 = π‘œ 𝑕 𝑒 = (π‘žπ‘“ 1 + π‘Ÿ) " 𝑙 π‘ž ! π‘Ÿ "#! Geometric Ge π‘žπ‘“ 1 𝑄 π‘ˆ = π‘œ = π‘Ÿ "#* π‘ž 𝑕 𝑒 = 1 βˆ’ π‘Ÿπ‘“ 1 Poisson Po 𝑄 π‘Œ = 𝑙 = πœ‡ ! 𝑕 𝑒 = 𝑓 0(3 . #*) 𝑙! 𝑓 #0 XC 2020

  23. XC 2020

  24. Po Poisson 𝑄 π‘Œ = 𝑙 = πœ‡ ! 𝑕 𝑒 = 𝑓 0(3 . #*) . 𝑙! 𝑓 #0 𝑕 , 0 = 𝑒 , = 𝑒𝑒 , 𝑕 𝑒 | )$! = 𝜈 , 𝐹 π‘Œ . = 𝜈 . = 𝑒 . 𝑒𝑒 . 𝑕 𝑒 | )$! = 𝑒 . 𝑒𝑒 . 𝑓 6(/ " -%) | )$! = 𝑒 𝑒𝑒 𝑓 6(/ " -%) πœ‡ ( 𝑓 () + πœ‡π‘“ ) | )$! = 𝑓 6(/ " -%) πœ‡ . 𝑓 .) + 3πœ‡ ( 𝑓 () + πœ‡π‘“ ) | )$! = πœ‡ . + 3πœ‡ ( + πœ‡ XC 2020

Recommend


More recommend