MATH 20: PROBABILITY Generating Functions Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020
di distri ribution Random Variable Password Lo Log I In Forget Password XC 2020
di distri ribution Random Variable Expected Value & Variance Lo Log I In Forget Password XC 2020
Binomial Distribution and Normal Distribution Binomia Bin ial D Dist istrib ibutio ion Norma Nor mal Distribution on πΉ(π) & π(π) π π, π, π = π 1 π π ! π "#! ππ = π π # %#& ! /() ! Β§ π $ π¦ = ππ 1 β π = π ( 2ππ Β§ XC 2020
di distri ribution Random Variable Moments Lo Log I In Forget Password XC 2020
GENERATING FUNCTIONS discrete distribution XC 2020
Moments Β§ If π is a random variable with range π¦ * , π¦ ( , β― of at most countable size, and the distribution function π = π $ , we introduce the moments of π , which are numbers defined as follows: π ! = π th moment of π = πΉ π ! ! π(π¦ + ) , -. π¦ + = β +,* provided the sum converges. Here π π¦ + = π(π = π¦ + ) . ? π ! = β― XC 2020
π th moment of π π $ = 1 = &' " π(π¦ # ) π " = πΉ π " = * π¦ # #$% &' π ! = πΉ 1 = * π(π¦ # ) π % = β― ? #$% &' π % = πΉ π = * π¦ # π(π¦ # ) #$% &' π & = β― π ( = πΉ π ( = * ( π(π¦ # ) ? π¦ # #$% XC 2020
Expected Value & Variance π th moment of π π " = πΉ π " &' " π(π¦ # ) = * π¦ # Expe pecte ted Value ue #$% π & = β― π % = πΉ π &' = * π¦ # π(π¦ # ) π = β― Variance Va #$% π ( = πΉ π ( &' ( π(π¦ # ) = * π¦ # #$% XC 2020
Expected Value & Variance π th moment of π π " = πΉ π " &' " π(π¦ # ) = * π¦ # Expe pecte ted Value ue #$% π & = π & β π % & π % = πΉ π &' = * π¦ # π(π¦ # ) π = π % Va Variance #$% π = π % π ( = πΉ π ( &' ( π(π¦ # ) = * π¦ # #$% XC 2020
Moment Generating Functions Β§ We introduce a new variable π’, and de fi ne a function π(π’) as follows: Ex Expect cted val alue π π(π) &' π !( ! π(π¦ # ) . π π’ = πΉ π !" = β #$% & π(π¦)π(π¦) Β§ We call π(π’) the moment generating function for π , and think of it as a convenient bookkeeping device for "β$ describing the moments of π . &' π " π’ " &' πΉ(π " )π’ " &' π " π’ " Taylor π π’ = πΉ π )* = πΉ = * = * = * Expansion π! π! π! "$! "$! "$! XC 2020
Moment Generating Functions Β§ If we differentiate π(π’) π times and then set π’ = 0 , we get π " . &' π " π’ " &' π π’ = πΉ π )* = * π )+ ! π(π¦ # ) = * = π! #$% "$! &' π " π’ " &' π! π " π’ "-, &' π " π’ "-, &' π " π’ "-, ππ’ , π π’ = π , π , π , ππ’ , * = * π! π β π ! = * ππ’ , π π’ | )$! = * π β π ! | )$! = π , π! π β π ! "$! "$, "$, "$, π , 0 = π , = ππ’ , π π’ | )$! = π , XC 2020
Uniform Distribution Ra Random vari riable le range: 1, 2, 3, β― , π π * π = % distribution function: , Generating funct ction on , 1 *+ π , π’ , *+ π π )# = 1 π π ) + π () + π .) + β― + π ,) π π’ = πΉ π %& = & π π’ = * π %" ! π(π¦ ' ) = & = π! '() ,(- #$% / " (/ #" -%) ,(/ " -%) . = π , 0 = π , = ππ’ , π π’ | )$! = π , XC 2020
Uniform Distribution Random Ra vari riable le range: 1, 2, 3, β― , π % distribution function: π * π = , Generating funct ction on / " (/ #" -%) , π )# = % , ,(/ " -%) . π π’ = β #$% *+ π , π’ , *+ π π’ = πΉ π %& = & π %" ! π(π¦ ' ) = & = π! Mom Moments '() ,(- π % = π 2 0 = % ,&% ( . , 1 + 2 + 3 + β― + π = π , 0 = π , π ( = π 22 0 = , 1 + 4 + 9 + β― + π ( = % (,&%)((,&%) . = ππ’ , π π’ | )$! = π , 3 XC 2020
Uniform Distribution Ra Random vari riable le range: 1, 2, 3, β― , π % distribution function: π * π = , Generating funct ction on / " (/ #" -%) , π )# = % , ,(/ " -%) . π π’ = β #$% Mom Moments π % = π 2 0 = % ,&% ( . , 1 + 2 + 3 + β― + π = π ( = π 22 0 = , 1 + 4 + 9 + β― + π ( = % (,&%)((,&%) . 3 π = π * Expect cted value & variance ce π ( = π ( β π * ( π = π % = π + 1 . 2 , $ -% π ( = π ( β π % ( = %( . XC 2020
Binomial Distribution Random Ra vari riable le range: 0, 1, 2, 3, β― , π , distribution function: π * π = # π # π ,-# Generating funct ction on , *+ π , π’ , *+ π )# π π π # π ,-# = π π’ = πΉ π %& = & π π’ = * π %" ! π(π¦ ' ) = & = π! '() ,(- #$% # (ππ ) ) # π ,-# = (ππ ) + π) , . , , β #$% π , 0 = π , = ππ’ , π π’ | )$! = π , XC 2020
Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, β― , π , distribution function: π * π = # π # π ,-# Generating funct ction on # π # π ,-# = (ππ ) + π) , . , , π )# π π’ = β #$% *+ π , π’ , *+ π π’ = πΉ π %& = & π %" ! π(π¦ ' ) = & = π! Moments Mom '() ,(- π % = π 2 0 = π(ππ ) + π) ,-% ππ ) | )$! = ππ . π ( = π 22 0 = π π β 1 π ( + ππ . π , 0 = π , = ππ’ , π π’ | )$! = π , XC 2020
Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, β― , π , distribution function: π * π = # π # π ,-# Generating funct ction on # π # π ,-# = (ππ ) + π) , . , , π )# π π’ = β #$% Mom Moments π % = π 2 0 = ππ . π ( = π 22 0 = π π β 1 π ( + ππ . π = π * Expect cted value & variance ce π ( = π ( β π * π = π % = ππ. ( π ( = π ( β π % ( = ππ(1 β π) . XC 2020
Geometric Distribution Ra Random vari riable le range: 1, 2, 3, β― , π distribution function: π * π = π #-% π *+ π , π’ , *+ π π’ = πΉ π %& = & = π %" ! π(π¦ ' ) = & π! Generating funct ction on '() ,(- 4/ " , %-5/ " . π )# π #-% π = π π’ = β #$% Moments Mom π , 0 = π , = ππ’ , π π’ | )$! = π , 4/ " π % = π 2 0 = % 4 . (%-5/ " ) $ | )$! = 4/ " &45/ $" π ( = π 22 0 = %&5 4 $ . (%-5/ " ) % | )$! = Expect cted value & variance ce π = π * π = π % = 1 π ( = π ( β π * ( π . π ( = π ( β π % ( = 5 4 $ . XC 2020
Poisson Distribution Ra Random vari riable le range: 0, 1, 2, 3, β― , π π * π = π -6 6 ! distribution function: #! Generating funct ction on π )# π -6 6 ! (6/ " ) ! #! = π -6 β #$% = π 6(/ " -%) . , , π π’ = β #$% #! Mom Moments π % = π 2 0 = π 6(/ " -%) ππ ) | )$! = π . π ( = π 22 0 = π 6(/ " -%) π ( π () + ππ ) | )$! = π ( + π . *+ π , π’ , *+ π π’ = πΉ π %& = & π %" ! π(π¦ ' ) = & = π! '() ,(- Expect cted value & variance ce π = π % = π. π ( = π ( β π % ( = π. π , 0 = π , = ππ’ , π π’ | )$! = π , XC 2020
Unifor Un orm π π = π = 1 π π = " ! #* πΉ π = "-* ( , π *( Bin Binomia ial π π, π, π = π πΉ π = ππ , π π = πππ π π ! π "#! Geometric Ge πΉ π = * π π = *#/ / , π π = π = π "#* π / ! Po Poisson π π = π = π ! πΉ π = π , π π = π π! π #0 XC 2020
Unifor Un orm π π’ = π 1 (π "1 β 1) π π = π = 1 π(π 1 β 1) π Bin Binomia ial π π, π, π = π π π’ = (ππ 1 + π) " π π ! π "#! Geometric Ge ππ 1 π π = π = π "#* π π π’ = 1 β ππ 1 Poisson Po π π = π = π ! π π’ = π 0(3 . #*) π! π #0 XC 2020
XC 2020
Po Poisson π π = π = π ! π π’ = π 0(3 . #*) . π! π #0 π , 0 = π , = ππ’ , π π’ | )$! = π , πΉ π . = π . = π . ππ’ . π π’ | )$! = π . ππ’ . π 6(/ " -%) | )$! = π ππ’ π 6(/ " -%) π ( π () + ππ ) | )$! = π 6(/ " -%) π . π .) + 3π ( π () + ππ ) | )$! = π . + 3π ( + π XC 2020
Recommend
More recommend