massive tadpoles
play

MASSIVE TADPOLES: Techniques & Applications I. RHO-PARAMETER - PowerPoint PPT Presentation

MASSIVE TADPOLES: Techniques & Applications I. RHO-PARAMETER II. QUARK MASSES III. MISCELLANEOUS J. K uhn / Project A1 I. RHO-PARAMETER 1. Definition, work before 2003 2. Three-loop electroweak results with full m H -dependence


  1. MASSIVE TADPOLES: Techniques & Applications I. RHO-PARAMETER II. QUARK MASSES III. MISCELLANEOUS J. K¨ uhn / Project A1

  2. I. RHO-PARAMETER 1. Definition, work before 2003 2. Three-loop electroweak results with full m H -dependence (Faisst, JK, Seidensticker, Veretin) � � G F α 3 3. Four-loop QCD contributions, O s (Chetyrkin, Faisst, JK, Maierh¨ ofer, Meier, Sturm) 2

  3. I.1 Definition, work before 2003 central prediction of SM: M W = f ( G F , M Z , α ; M t , M H , . . . ) � �� � � �� � Born radiative corrections [similarly for couplings of fermions: sin 2 θ eff ] � � 1 − M 2 πα M 2 W = √ (1 + ∆ r ) W M 2 2 G F Z ∆ r dominated by: ∆ r = − c 2 s 2 ∆ ρ + ∆ α � � G F M 2 ∆ ρ ∼ + . . . (Veltman) t 3

  4. aim: compete with experiment δM W [MeV] δM t [GeV] 33 5 status 2003 (LEP, TEVATRON) 15 0.76 now (TEVATRON, LHC) 8 → 5 0.6 aim (LHC), theory limited 3, < 1.2 0.1 - 0.2 ILC, TLEP theory: correlation (for α ( M Z ) , M H fixed): δM W ≈ 6 · 10 − 3 δM t � � � LHC 5 MeV ⇒ shifts in M W � are relevant for e + e − collider 1 MeV 4

  5. Theory: Status 2002 � Barbieri, Beccaria, Ciafaloni, Curci, Vicere status: two-loop Fleischer, Jegerlehner, Tarasov approximation: M 2 t ≫ M 2 ⇒ scalar bosons only, gaugeless limit W 2 π 2 = g 2 X t ≡ G F M 2 ∆ ρ = X 2 t Yukawa t f ( M t /M H ) with √ 16 π 2 8 status: three-loop M H = 0 (van der Bij, Chetyrkin, Faisst, Jikia, Seidensticker) poor approximation, leads to tiny corrections for terms of order X 3 t and α s X 2 t 5

  6. M H � = 0 (Faisst, JK, Seidensticker, Veretin, 2003) � � requires: 3-loop tadpoles Π WW (0) , Π ZZ (0) . . � H ; �; � X 3 t f ( m t /M H ) H H � � � � � � � H ; �; � . . . α s X 2 t f ( m t /M H ) H � � � . and two-loop on-shell diagrams: M t ⇐ ⇒ m t ( MS ) . . . . t H , � H , � � H , � � � H , � H , � t t t t t t t t t t t t t t t t b b b . . . . . H , � t t t t t H , � . in general two (!) mass scales, three loops 6

  7. special cases: √ M H = 0 : H ) n mod. log hard mass expansion in ( M 2 t /M 2 M H ≫ M t : M H = M t : one scale M H in neighbourhood of M t : Taylor expansion: δ = ( M H − M t ) /M t excellent approximation ⇒ reduction to one-scale two- or three-loop integrals 7

  8. on-shell result O ( α s X 2 t ) -4 1.5 ⋅ 10 M H /M t = 0 . 726 400 300 up to 1. ord (m t ≈ M H ) -4 1 ⋅ 10 up to 2. ord (m t ≈ M H ) up to 3. ord (m t ≈ M H ) up to 4. ord (m t ≈ M H ) 200 up to 5. ord (m t ≈ M H ) -5 0. ord (m t <M H ) 5 ⋅ 10 up to 1. ord (m t <M H ) 100 up to 3. ord (m t <M H ) up to 5. ord (m t <M H ) 0 0 0 1 2 3 4 5 M H / M t 2 ) 2 ) 2 ∆ρ (α s X t (α s X t ( α s / π )X t ∆ρ -100 Contributions of order α s X 2 t to ∆ ρ in the on-shell definition of the top quark mass. The black squares indicate the points where the exact result is known. M H = (0 | 126) ⇒ ∆ ρ ( α s X 2 t ) = (2 . 9 | 120) 8

  9. 0 . 726 -5 -4 ⋅ 10 δ M W [MeV] 2 θ eff δ sin 5 -5 -2 ⋅ 10 0 0 -5 2 ⋅ 10 -5 2 contribution X t -5 2 X t contribution 4 ⋅ 10 α s 2 contribution -10 α s X t -5 6 ⋅ 10 3 contribution X t -15 -5 8 ⋅ 10 -4 1 ⋅ 10 -20 M H / M t 0 1 2 3 4 5 δM W ≈ 2 . 3 MeV δ sin 2 θ eff ≈ 1 . 5 · 10 − 5 9

  10. I.3 Four-loop QCD contributions QCD: Status 2002 . . t one-loop (1977) t; b Z Z W W (Veltman) b . . two-loop (1987) (Djouadi; Kniehl, JK, Stuart) tadpoles; zero scale three-loop (1995) (Chetyrkin, JK, Steinhauser) (Avdeev,. . . ) 10

  11. α 0 α 1 α 2 δM W in MeV s s s M 2 611.9 -61.3 -10.9 t const. 136.6 -6.0 -2.6 1 /M 2 -9.0 -1.0 -0.2 t four loop? 11

  12. Techniques: 3-loop M pole ⇔ ¯ m relation (1999/2000) (Chetyrkin+Steinhauser, Melnikov+van Ritbergen) and 4-loop tadpoles: Laporta algorithm [previously: 3 loop tadpoles ⇒ recursive algorithm (Broadhurst, Steinhauser: MATAD)] analytical and numerical evaluation of ∼ 50 four-loop master integrals: difference equations, semi-numerical integration 12

  13. 13

  14. result (2006) (Chetyrkin, Faisst, JK, Maierh¨ ofer, Sturm) = 3 G F m 2 δρ (4 loop) 2 π 2 α 3 t √ s ( − 3 . 2866 +1 . 6067 = − 1 . 6799) t 8 ↑ ↑ singlet piece this result (Schr¨ oder+ Steinhauser, 2005) result immediately independently confirmed (Boughezal+Czakon) conversion to pole mass: = 3 G F M 2 δρ (4 loop) 2 π 2 α 3 t √ s ( − 93 . 1501) ! t 8 corresponds to a shift δM W ∼ 2 MeV (similar to O ( x 2 t α s )) 14

  15. II. QUARK MASSES from relativistic 4 loop moments 1. Why 2. Theory 3. Results, from experiment and from lattice in collaboration with K. Chetyrkin, Y. Kiyo, A. Maier, P. Maierh¨ ofer, P. Marquard, A. Smirnov, M. Steinhauser, C. Sturm and the HPQCD Collaboration 15

  16. II.1 WHY precise masses? B-decays: ν ) ∼ G 2 F m 5 b | V ub | 2 Γ( B → X u l ¯ ν ) ∼ G 2 F m 5 b f ( m 2 c /m 2 b ) | V cb | 2 Γ( B → X c l ¯ B → X s γ comparison with Υ-spectroscopy: � 4 � 2 M b M (Υ(1s)) = 2 M b − 3 α s 4 + ... + excitations (Penin & Zerf, . . . δm b ∼ 9 MeV) 16

  17. H decay (ILC, TLEP) H → b ¯ b dominant decay mode, all branching ratios are affected! status: Γ b = G F M 2 2 π m 2 b ( M H ) R S ( M H ) H √ 4 � α s � � α s � 2 � α s � 3 � α s � 4 R S ( M H ) = 1 + 5 . 667 + 29 . 147 + 41 . 758 − 825 . 7 π π π π = 1 + 0 . 19551 + 0 . 03469 + 0 . 00171 − 0 . 00117 � ↑ (Chetyrkin, Baikov, JK, 2006) Theory uncertainty ( M H / 3 < µ < 3 M H ) : 5 � (four loop) reduced to 1 . 5 � (five loop) present uncertainties from m b 17

  18. m b (10 GeV) = 3610 − α s − 0 . 1189 12 ± 11 MeV (Karlsruhe, arXiv:0907.2110) 0 . 002 running from 10 GeV to M H depends on anomalous mass dimension, β -function and α s =1 . 5 × 10 − 4 ) m b ( M H )2759 ± 8 | m b ± 27 | α s MeV aim ± 4 MeV ( � γ 4 (five loop): Baikov + Chetyrkin, 2013 β 4 under construction δm 2 b ( M H ) b ( M H ) = − 1 . 4 × 10 − 4 ( b 4 = 0) | − 4 . 3 × 10 − 4 ( b 4 = 100) | − 7 . 3 × 10 − 4 ( b 4 = 200) m 2 to be compared with δ Γ / Γ = 2 . 0 × 10 − 3 (TLEP) 18

  19. Yukawa Unification λ τ ∼ λ b or λ τ ∼ λ b ∼ λ t at GUT scale � top-bottom → m t m b ∼ ratio of vacuum expectation values request δm b m b ∼ δm t m t ⇒ δm t ≈ 0 . 5 GeV ⇒ δm b ≈ 12 MeV 19

  20. II.2 Theory m Q from SVZ Sum Rules, Moments and Tadpoles Main Idea (SVZ) 20

  21. Some definitions: � � � − q 2 g µν + q µ q ν Π( q 2 ) d x e iqx � Tj µ ( x ) j ν (0) � ≡ i with the electromagnetic current j µ . � � Π( q 2 = s + iǫ ) R ( s ) = 12 π Im � 3 Taylor expansion: Π Q ( q 2 ) Q 2 C n z n ¯ = Q 16 π 2 n ≥ 0 with z = q 2 / (4 m 2 Q ) and m Q = m Q ( µ ) the MS mass. � α s � 2 ¯ � α s � 3 ¯ + α s C (0) C (1) C (2) C (3) C n = ¯ ¯ ¯ + + + . . . n n n n π π π 21

  22. generic form C (0) C n = ¯ ¯ n � � + α s C (10) C (11) ¯ + ¯ l m c n n π � α s � 2 � � C (20) C (21) C (22) l 2 ¯ + ¯ l m c + ¯ + n n n m c π � α s � 3 � � C (30) C (31) C (32) C (33) l 2 l 3 ¯ + ¯ l m c + ¯ m c + ¯ + n n n n m c π + . . . 22

  23. Analysis in NNLO • FORM program MATAD • Coefficients ¯ C n up to n = 8 • (also for axial, scalar and pseudoscalar correlators) • (Chetyrkin, JK, Steinhauser, 1996) 23

  24. Analysis in N 3 LO Algebraic reduction to 13 master integrals (Laporta algorithm); numerical and analytical evaluation of master integrals n 2 n 1 n 0 f -contributions f -contributions f -contributions · · · · · · · · · :heavy quarks, :light quarks, n f :number of active quarks ⇒ About 700 Feynman-diagrams 24

  25. ➪ Reduction to master integrals C 1 in order α 3 C 0 and ¯ ¯ s (four loops!) Program “Sturman” (Sturm) (2006) (Chetyrkin, JK, Sturm; Boughezal, Czakon, Schutzmeier) C 2 and ¯ ¯ C 3 (2008) Program “Crusher”, Marquard & Seidel (Maier, Maierh¨ ofer, Marquard, A. Smirnov) All master integrals known analytically and double checked. (Schr¨ oder + Vuorinen, Chetyrkin et al., Schr¨ oder + Steinhauser, Laporta, Broadhurst, Kniehl et al.) C 4 – ¯ ¯ C 10 : extension to higher moments by Pad´ e method, using analytic information from low energy ( q 2 = 0), threshold ( q 2 = 4 m 2 ), high energy ( q 2 = −∞ ) (Kiyo, Maier, Maierh¨ ofer, Marquard, 2009) (Also: q 2 -dependence of scalar, vector,... correlator) 25

  26. Relation to measurements � � � n � � n � n ≡ 12 π 2 d � = 9 1 M th Π c ( q 2 ) 4 Q 2 � ¯ C n � c d q 2 4 m 2 n ! � q 2 =0 c C n is function of α s and ln m 2 Perturbation theory: ¯ c µ 2 dispersion relation: � q 2 R c ( s ) Π c ( q 2 ) = d s s ( s − q 2 ) + subtraction 12 π 2 � d s ➪ M exp = s n +1 R c ( s ) n constraint: M exp = M th n n ➪ m c 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend