majorization inequalities for valuations of eigenvalues
play

Majorization inequalities for valuations of eigenvalues Marianne - PowerPoint PPT Presentation

Majorization inequalities for valuations of eigenvalues Marianne Akian INRIA Saclay - Ile-de-France and CMAP, Ecole polytechnique CNRS SYMBIONT ANR/DFG Kick-off Meeting Bonn, Jul 4-5, 2018 Based on works with Ravindra Bapat, St


  1. Majorization inequalities for valuations of eigenvalues Marianne Akian INRIA Saclay - ˆ Ile-de-France and CMAP, ´ Ecole polytechnique CNRS SYMBIONT ANR/DFG Kick-off Meeting Bonn, Jul 4-5, 2018 Based on works with Ravindra Bapat, St´ ephane Gaubert, Andrea Marchesini, Meisam Sharify, and Fran¸ coise Tisseur

  2. Majorizations of scalar polynomial roots Let ζ 1 , . . . , ζ d , | ζ 1 | ≥ · · · ≥ | ζ d | , denote the roots of the polynomial P = a 0 + a 1 z + · · · + a k z k + · · · + a d z d , a i ∈ C . Let α 1 ≥ · · · ≥ α d denote the inclinaisons 10 num´ eriques of P , that is the exponential 8 6 of the opposites of the slopes of the New- 4 ton polygon of P , concave( k �→ log | a k | ). 2 0 0 2 4 6 8 10 12 14 16 For each k ≥ 1, there exists L k , U k > 0 independent of d such that L k α 1 · · · α k ≤ | ζ 1 · · · ζ k | ≤ U k α 1 · · · α k , � d with L − 1 � � ( k + 1) k +1 / k k . = and U k ≤ k k (Ostrowski, “Recherches sur la m´ ethode de Graeffe et les z´ eros des polynomes et des s´ eries de Laurent”, Acta Math 72, 99-257, 1940)

  3. Majorizations of scalar polynomial roots Let ζ 1 , . . . , ζ d , | ζ 1 | ≥ · · · ≥ | ζ d | , denote the roots of the polynomial P = a 0 + a 1 z + · · · + a k z k + · · · + a d z d , a i ∈ C . Let α 1 ≥ · · · ≥ α d denote the inclinaisons 10 num´ eriques of P , that is the exponential 8 6 of the opposites of the slopes of the New- 4 ton polygon of P , concave( k �→ log | a k | ). 2 0 0 2 4 6 8 10 12 14 16 For each k ≥ 1, there exists L k , U k > 0 independent of d such that L k α 1 · · · α k ≤ | ζ 1 · · · ζ k | ≤ U k α 1 · · · α k , � d with L − 1 � � ( k + 1) k +1 / k k . = and U k ≤ k k Ostrowski proved L k (which is optimal) and reproduced the proof of U k given by P´ olya

  4. Majorizations of scalar polynomial roots Let ζ 1 , . . . , ζ d , | ζ 1 | ≥ · · · ≥ | ζ d | , denote the roots of the polynomial P = a 0 + a 1 z + · · · + a k z k + · · · + a d z d , a i ∈ C . Let α 1 ≥ · · · ≥ α d denote the inclinaisons 10 num´ eriques of P , that is the exponential 8 6 of the opposites of the slopes of the New- 4 ton polygon of P , concave( k �→ log | a k | ). 2 0 0 2 4 6 8 10 12 14 16 For each k ≥ 1, there exists L k , U k > 0 independent of d such that L k α 1 · · · α k ≤ | ζ 1 · · · ζ k | ≤ U k α 1 · · · α k , � d with L − 1 � � ( k + 1) k +1 / k k . = and U k ≤ (Ostrowski, P´ olya, 1940) k k Previous inequalities include: U k ≤ k + 1 (Hadamard, 1891), | ζ 1 | ≤ 2 α 1 (Fujiwara, 1916), | ζ 1 · · · ζ k | ≤ ( k + 1) α k 1 (Specht, 1938), U k ≤ 2 k + 1 in (Ostrowski, 1940).

  5. Max-plus or tropical algebra Let T = R max := ( R ∪ {−∞} , ⊕ , ⊗ ) be the additive tropical or max-plus idempotent semifield, where a ⊕ b = max( a , b ) and a ⊗ b = a + b , with neutral elements 0 = −∞ and 1 = 0. On can define vectors, matrices, polynomials, eigenvalues, eigenvectors, permanents,... T is the limit of the logarithmic deformation of R + semiring: log( ε − a + ε − b ) max( a , b ) = lim ε → 0 + − log( ε ) log( ε − a ε − b ) a + b = . − log( ε ) And it gives bounds: ε log( e a /ε + e b /ε ) ≤ ε log(2) + max( a , b ) . max( a , b ) ≤ It is isomorphic to the multiplicative tropical semifield T m := ( R ≥ 0 , max , × ), by x �→ exp( x ).

  6. Valuations Let K be a field, a map v : K → R ∪ {−∞} is a non- a map v : K → R + is an archimedean archimedean valuation if valuation if v( s 1 + s 2 ) ≤ max(v( s 1 ) , v( s 2 )) , v( z 1 + z 2 ) ≤ v( z 1 ) + v( z 2 ) , v( s 1 s 2 ) = v( s 1 ) + v( s 2 ) v( z 1 z 2 ) = v( z 1 ) v( z 2 ) , v( s ) = −∞ ⇔ s = 0 . v( z ) = 0 ⇔ z = 0 . Then Then v( s 1 + s 2 ) = max(v( s 1 ) , v( s 2 )) if v( s 1 ) � = v( s 2 ). v( z 1 + z 2 ) ≤ 2 max(v( z 1 ) , v( z 2 )). Ex: K = C , v( z ) = | z | . Ex: K = C {{ ǫ }} , the field of (general- ized) Puiseux series, v( s ) = − val( s ), e.g. v( ǫ − 1 / 3 + 3 − 8 ǫ 2 + · · · ) = 1 / 3. Given a (archimedean or non-archimedean) valuation v on K , one apply v entrywise on K n , K n × n , K [ X ], e.g. v( z 1 , . . . , z n ) := (v( z 1 ) , . . . , v( z n )). Given a variety V on K , its image by v is called the amoeba of V .

  7. Let T m = ( R ≥ 0 , max , × ) be the multiplicative tropical semifield eriques” α i of P = a 0 + a 1 z + · · · + a k z k + · · · + a d z d are The “inclinaisons num´ the tropical roots (nondifferentiability locus) of the multiplicative tropical polynomial v( P ) ∈ T m [ X ]: 0 ≤ j ≤ d ( | a j | x j ) v( P )( x ) = max ⇔ the log α i are the tropical roots of p ( x ) = max 0 ≤ j ≤ d (log | a j | + jx ). Here v is the archimedean valuation : v : C → R ≥ 0 , x �→ | x | .

  8. Let T m = ( R ≥ 0 , max , × ) be the multiplicative tropical semifield eriques” α i of P = a 0 + a 1 z + · · · + a k z k + · · · + a d z d are The “inclinaisons num´ the tropical roots (nondifferentiability locus) of the multiplicative tropical polynomial v( P ) ∈ T m [ X ]: 0 ≤ j ≤ d ( | a j | x j ) v( P )( x ) = max ⇔ the log α i are the tropical roots of p ( x ) = max 0 ≤ j ≤ d (log | a j | + jx ). Since the Newton polygon of P is the graph of the convave hull of the map j �→ log | a j | and p is its Legendre-Fenchel transform. 10 35 30 8 25 6 20 4 15 10 2 5 0 0 0 2 4 6 8 10 12 14 16 −6 −5 −4 −3 −2 −1 0 1 2 Newton polygon of P Graph of p Example: P = 1 + eX + e 6 X 2 + e 4 X 4 + e 9 X 8 + e 5 X 10 + eX 16. Tropical roots: − 3, − 1 / 2, and 1, with multiplicities 2, 6 and 8 resp.

  9. Theorem ( See Kapranov, 2006 ) Let K be an algebraically closed field with a (non-archimedean) valuation v , and k f k X k ∈ K [ X ] , then the valuations of the roots of f (counted with f = � multiplicities) coincide with the tropical roots of the tropical polynomial v( f ) := � n k =0 v( f k ) X k . Follows from Puiseux theorem in dimension 1, and is derived from Puiseux in other dimensions.

  10. Majorizations of scalar polynomial roots Let ζ 1 , . . . , ζ d , | ζ 1 | ≥ · · · ≥ | ζ d | , denote the roots of the polynomial P = a 0 + a 1 z + · · · + a k z k + · · · + a d z d , a i ∈ C . Let α 1 ≥ · · · ≥ α d denote the inclinaisons 10 num´ eriques of P , that is the exponential 8 6 of the opposites of the slopes of the New- 4 ton polygon of P , concave( k �→ log | a k | ). 2 0 0 2 4 6 8 10 12 14 16 For each k ≥ 1, there exists L k , U k > 0 independent of d such that L k α 1 · · · α k ≤ | ζ 1 · · · ζ k | ≤ U k α 1 · · · α k , with L − 1 � d � � = and U k ≤ ( k + 1) k +1 / k k . (Ostrowski, P´ olya, 1940) k k

  11. Let Log : ( C ∗ ) d → R d , x �→ (log | x 1 | , . . . , log | x d | ). Ostrowski bounds give the distance between the archimedan amoeba A = Log ( V ) of the finite set V of C d of solutions ( ζ 1 , . . . , ζ d ) of � ζ i 1 · · · ζ i k = ( − 1) k a d − k / a d , k = 1 , . . . d , i 1 < ··· < i k up to permutations of coordinates, to its “tropical skeleton” T .

  12. Let Log : ( C ∗ ) d → R d , x �→ (log | x 1 | , . . . , log | x d | ). Ostrowski bounds give the distance between the archimedan amoeba A = Log ( V ) of the finite set V of C d of solutions ( ζ 1 , . . . , ζ d ) of � ζ i 1 · · · ζ i k = ( − 1) k a d − k / a d , k = 1 , . . . d , i 1 < ··· < i k up to permutations of coordinates, to its “tropical skeleton” T . T is the set of (log α 1 , . . . , log α d ) solutions of � | a d − k / a d | ⊕ α i 1 · · · α i k “ = ” 0 , k = 1 , . . . d . i 1 < ··· < i k Ostrowski bounds implies d ( A , T ) ≤ 1 for the distance d ( x , y ) = min σ,σ ′ ∈ Σ d � ( x σ ( i ) ) − ( y σ ′ ( i ) ) � associated to the weak Minkowski (non symmetric) norm: (log U k ) − 1 ( x 1 + · · · + x k ) + − (log L k ) − 1 ( x 1 + · · · + x k ) − � � � x � = max . k =1 ,..., d

  13. These are different from the bounds on the distance between the archimedan amoeba A = Log ( V ) of the finite set V of roots of P and its tropical skeleton: • such bounds can be obtained by using Rouch´ e theorem. • they are related to lopsided approximations. • see in particular the works of (Gaubert, Sharify, 2011), (Bini, Noferini, Sharify, 2013), (Erg¨ ur, Paouris, Rojas, 2014) . In the multivariate case (non zero dimension), such bounds appeared in: (Passare, R¨ ullgaard, 04); (Purbhoo, 06); (Avendano, Kogan, Nisse, Rojas, 13), (Forsg˚ ard, 16), ard, Matusevich, Mehlhop, de Wolff, 17) . (Forsg˚

  14. This work: give majorizations/Ostrowski bounds for the eigen- values of matrix polynomials

  15. This work: give majorizations/Ostrowski bounds for the eigen- values of matrix polynomials We are interested in • Non-archimedean case • Archimedean case • Eigenvectors • Condition numbers and applications to numerical computations of eigenvalues and eigenvectors

  16. This work: give majorizations/Ostrowski bounds for the eigen- values of matrix polynomials We are interested in • Non-archimedean case • Archimedean case • Eigenvectors • Condition numbers and applications to numerical computations of eigenvalues and eigenvectors

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend