macroscopic scattering by a langevin heat bath in contact
play

Macroscopic scattering by a Langevin heat bath in contact with a - PowerPoint PPT Presentation

Macroscopic scattering by a Langevin heat bath in contact with a harmonic chain. Stefano Olla CEREMADE, Universit e Paris-Dauphine, PSL Supported by ANR LSD Nice, November 27, 2017 S. Olla - CEREMADE thermal-scattering thermal boundaries


  1. Macroscopic scattering by a Langevin heat bath in contact with a harmonic chain. Stefano Olla CEREMADE, Universit´ e Paris-Dauphine, PSL Supported by ANR LSD Nice, November 27, 2017 S. Olla - CEREMADE thermal-scattering

  2. thermal boundaries Thermal boundaries appear in macroscopic equations for the evolution of energy or temperatures profiles. T + T − S. Olla - CEREMADE thermal-scattering

  3. thermal boundaries Thermal boundaries appear in macroscopic equations for the evolution of energy or temperatures profiles. T + T − Basic example: heat equation for a material in contact with heat bath at the boundaries: ∂ t u ( t , y ) = ∂ y ( D ( u ) ∂ y u ( t , y )) , y ∈ [ 0 , L ] u ( t , 0 ) = T + , u ( t , L ) = T − . S. Olla - CEREMADE thermal-scattering

  4. Microscopic modeling: Langevin stochastic thermostats q ( t ) , p ( t ) positions and velocities of the system at time t : d q ( t ) = p ( t ) dt √ d p ( t ) = − ∂ q V ( q ( t )) − γ p ( t ) dt + 2 γ Td w ( t ) The equilibrium measure is the canonical Gibbs at temperature T : e − H ( p , q )/ T H ( p , q ) = p 2 2 + V ( q ) . , Z T S. Olla - CEREMADE thermal-scattering

  5. Microscopic modeling: Langevin stochastic thermostats q ( t ) , p ( t ) positions and velocities of the system at time t : d q ( t ) = p ( t ) dt √ d p ( t ) = − ∂ q V ( q ( t )) − γ p ( t ) dt + 2 γ Td w ( t ) The equilibrium measure is the canonical Gibbs at temperature T : e − H ( p , q )/ T H ( p , q ) = p 2 2 + V ( q ) . , Z T What is the effect of the thermostat in the macroscopic evolution, after a rescaling of space and time? S. Olla - CEREMADE thermal-scattering

  6. A kinetic limit Consider an infinite one dimensional chain of coupled harmonic oscillators, with a Langevin thermostat at site 0. p = { p x , x ∈ Z } , q = { q x , x ∈ Z } H( p , q ) ∶ = 1 2 ∑ x + 1 2 ∑ p 2 x , x ′ α x − x ′ q x q x ′ x S. Olla - CEREMADE thermal-scattering

  7. A kinetic limit Consider an infinite one dimensional chain of coupled harmonic oscillators, with a Langevin thermostat at site 0. p = { p x , x ∈ Z } , q = { q x , x ∈ Z } H( p , q ) ∶ = 1 2 ∑ x + 1 2 ∑ p 2 x , x ′ α x − x ′ q x q x ′ x d q x ( t ) = p x ( t ) dt , x ∈ Z √ d p x ( t ) = −( α ∗ q ( t )) x +(− γ p 0 ( t ) dt + 2 γ Tdw ( t )) δ 0 , x , where { w ( t ) , t ≥ 0 } is a standard Wiener process. S. Olla - CEREMADE thermal-scattering

  8. Coupled Harmonic Oscillators f ( k ) = ∑ k ∈ Π ∼ [ 0 , 1 ] f x e − i 2 π kx ˆ x α ( k ) ∈ C ∞ ( Π ) . √ ▸ ˆ ▸ ω ( k ) = α ( k ) : dispersion relation. S. Olla - CEREMADE thermal-scattering

  9. Coupled Harmonic Oscillators f ( k ) = ∑ k ∈ Π ∼ [ 0 , 1 ] f x e − i 2 π kx ˆ x α ( k ) ∈ C ∞ ( Π ) . √ ▸ ˆ ▸ ω ( k ) = α ( k ) : dispersion relation. In the n.n. unpinned chain ( acoustic chain ) : ω ( k ) = ∣ sin ( π k )∣ . S. Olla - CEREMADE thermal-scattering

  10. Coupled Harmonic Oscillators f ( k ) = ∑ k ∈ Π ∼ [ 0 , 1 ] f x e − i 2 π kx ˆ x α ( k ) ∈ C ∞ ( Π ) . √ ▸ ˆ ▸ ω ( k ) = α ( k ) : dispersion relation. In the n.n. unpinned chain ( acoustic chain ) : ω ( k ) = ∣ sin ( π k )∣ . ψ ( t , k ) ∶ = ω ( k ) ˆ q ( t , k ) + i ˆ p ( t , k ) . ˆ S. Olla - CEREMADE thermal-scattering

  11. Coupled Harmonic Oscillators f ( k ) = ∑ k ∈ Π ∼ [ 0 , 1 ] f x e − i 2 π kx ˆ x α ( k ) ∈ C ∞ ( Π ) . √ ▸ ˆ ▸ ω ( k ) = α ( k ) : dispersion relation. In the n.n. unpinned chain ( acoustic chain ) : ω ( k ) = ∣ sin ( π k )∣ . ψ ( t , k ) ∶ = ω ( k ) ˆ q ( t , k ) + i ˆ p ( t , k ) . ˆ √ ψ ( t , k ) = − i ω ( k ) ˆ ψ ( t , k ) dt − i γ p 0 ( t ) dt + i 2 γ Tdw ( t ) d ˆ S. Olla - CEREMADE thermal-scattering

  12. Coupled Harmonic Oscillators f ( k ) = ∑ k ∈ Π ∼ [ 0 , 1 ] f x e − i 2 π kx ˆ x α ( k ) ∈ C ∞ ( Π ) . √ ▸ ˆ ▸ ω ( k ) = α ( k ) : dispersion relation. In the n.n. unpinned chain ( acoustic chain ) : ω ( k ) = ∣ sin ( π k )∣ . ψ ( t , k ) ∶ = ω ( k ) ˆ q ( t , k ) + i ˆ p ( t , k ) . ˆ √ ψ ( t , k ) = − i ω ( k ) ˆ ψ ( t , k ) dt − i γ p 0 ( t ) dt + i 2 γ Tdw ( t ) d ˆ In integral form ψ ( t , k ) = e − i ω ( k ) t ˆ ψ ( 0 , k ) − i γ ∫ 0 e − i ω ( k )( t − s ) p 0 ( s ) ds t ˆ √ + i 0 e − i ω ( k )( t − s ) dw ( t ) 2 γ T ∫ t S. Olla - CEREMADE thermal-scattering

  13. Wigner distribution η ∈ R , ψ ∗ ( ε − 1 t , k − εη ̂ W ε ( t ,η, k ) ∶ = ε 2 E [ ˆ 2 ) ˆ ψ ( ε − 1 t , k + εη 2 )] W ε ( t ,η, k ) ∶ = ̂ ̂ W ε ( t , − η, k ) ∗ and the inverse Fourier transform in η ̂ W ε ( t , y , k ) = ∫ W ε ( t ,η, k ) e i 2 πη y d η ∈ R , y ∈ R , S. Olla - CEREMADE thermal-scattering

  14. Wigner distribution η ∈ R , ψ ∗ ( ε − 1 t , k − εη ̂ W ε ( t ,η, k ) ∶ = ε 2 E [ ˆ 2 ) ˆ ψ ( ε − 1 t , k + εη 2 )] W ε ( t ,η, k ) ∶ = ̂ ̂ W ε ( t , − η, k ) ∗ and the inverse Fourier transform in η ̂ W ε ( t , y , k ) = ∫ W ε ( t ,η, k ) e i 2 πη y d η ∈ R , y ∈ R , W ε ( t , y , k ) ⇀ ε → 0 W ( t , y , k ) ≥ 0 , as distribution When γ = 0 it is easy to prove that ∂ t W ( t , y , k ) + ω ′ ( k ) 2 π ∂ y W ( t , y , k ) = 0 S. Olla - CEREMADE thermal-scattering

  15. Easy case: γ = 0, no thermostat From waves to particle: ψ ( t , k ) = ˆ ψ ( 0 , k ) e − i ω ( k ) t ˆ S. Olla - CEREMADE thermal-scattering

  16. Easy case: γ = 0, no thermostat From waves to particle: ψ ( t , k ) = ˆ ψ ( 0 , k ) e − i ω ( k ) t ˆ ψ ∗ ( ε − 1 t , k − εη W ε ( t ,η, k ) ∶ = ε E [ ˆ 2 ) ˆ ψ ( ε − 1 t , k + εη 2 )] ˆ S. Olla - CEREMADE thermal-scattering

  17. Easy case: γ = 0, no thermostat From waves to particle: ψ ( t , k ) = ˆ ψ ( 0 , k ) e − i ω ( k ) t ˆ 2 )] ε − 1 t ̂ ̂ W ε ( t ,η, k ) ∶ = e i [ ω ( k − εη W ε ( 0 ,η, k ) 2 )− ω ( k + εη W ( 0 ,η, k ) ∼ ε → 0 e − i ω ′ ( k ) η t ˆ S. Olla - CEREMADE thermal-scattering

  18. Easy case: γ = 0, no thermostat From waves to particle: ψ ( t , k ) = ˆ ψ ( 0 , k ) e − i ω ( k ) t ˆ 2 )] ε − 1 t ̂ ̂ W ε ( t ,η, k ) ∶ = e i [ ω ( k − εη W ε ( 0 ,η, k ) 2 )− ω ( k + εη W ( 0 ,η, k ) ∼ ε → 0 e − i ω ′ ( k ) η t ˆ W ( t , y , k ) = W ( 0 , y − ω ′ ( k ) 2 π t , k ) Phonon of wave number k moves freely with velocity ω ′ ( k ) 2 π . S. Olla - CEREMADE thermal-scattering

  19. γ > 0 Explicit solution (microscopic) J ( t ) = ∫ T cos ( ω ( k ) t ) dk , S. Olla - CEREMADE thermal-scattering

  20. γ > 0 Explicit solution (microscopic) J ( t ) = ∫ T cos ( ω ( k ) t ) dk , The Laplace transform of J ( t ) is given by ∞ J ( λ ) = ∫ e − λ t J ( t ) dt = ∫ T λ ˜ λ 2 + ω 2 ( k ) dk . 0 − 1 = ∫ ∞ ∣ ˜ g ( λ )∣ < 1 g ( λ ) = ( 1 + γ ˜ J ( λ )) e − λ t g ( dt ) . ˜ 0 φ ( t , k ) = ∫ 0 e i ω ( k ) τ g ( d τ ) � g ( − i ω ( k )) ∶ = ν ( k ) t t →∞ ˜ → ψ ( t , k ) = e − i ω ( k ) t [ ˆ ψ ( 0 , k ) − i γ ∫ 0 φ ( t − s , k ) e i ω ( k ) s p 0 t 0 ( s ) ds ˆ √ 2 γ T ∫ 0 φ ( t − s , k ) e i ω ( k ) s dw ( s )] t + i 0 ( i ) : moment of particle 0 under the free evolution for γ = 0. p 0 S. Olla - CEREMADE thermal-scattering

  21. Results γ > 0 , W ( 0 , y , k ) = 0 ν ( k ) = ( 1 + γ ˜ J (− i ω ( k ))) − 1 T. Komorowski, L. Ryzhik, S.O., H. Spohn (2017). k Phonons creation at y = 0 with rate 2 γ T ∣ ν ( k )∣ 2 : ∂ t W ( t , y , k ) + ω ′ ( k ) 2 π ∂ y W ( t , y , k ) = 2 γ T ∣ ν ( k )∣ 2 δ ( y ) S. Olla - CEREMADE thermal-scattering

  22. Results for γ > 0 ∂ t W ( t , y , k ) + ω ′ ( k ) 2 π ∂ y W ( t , y , k ) = T γ ∣ ν ( k )∣ 2 δ ( y ) + ∣ ω ′ ( k )∣ ( p + ( k ) − 1 ) W 0 ( − ω ′ ( k ) t , k ) δ ( y ) 2 π 2 π + ∣ ω ′ ( k )∣ p − ( k ) W 0 ( ω ′ ( k ) t , − k ) δ ( y ) , 2 π 2 π W ( 0 , y , k ) = W 0 ( y , k ) . S. Olla - CEREMADE thermal-scattering

  23. Results for γ > 0 ∂ t W ( t , y , k ) + ω ′ ( k ) 2 π ∂ y W ( t , y , k ) = T γ ∣ ν ( k )∣ 2 δ ( y ) + ∣ ω ′ ( k )∣ ( p + ( k ) − 1 ) W 0 ( − ω ′ ( k ) t , k ) δ ( y ) 2 π 2 π + ∣ ω ′ ( k )∣ p − ( k ) W 0 ( ω ′ ( k ) t , − k ) δ ( y ) , 2 π 2 π W ( 0 , y , k ) = W 0 ( y , k ) . [ ω ′ ( k )] 2 γ 2 ∣ ν ( k )∣ 2 − 2 γπ Re ν ( k ) ∣ ω ′ ( k )∣ = ∣ 1 − γπ ν ( k ) 2 π 2 p + ( k ) ∶ = 1 + ∣ ω ′ ( k )∣∣ ≥ 0 . π 2 p − ( k ) ∶ = [ ω ′ ( k )] 2 γ 2 ∣ ν ( k )∣ 2 . S. Olla - CEREMADE thermal-scattering

  24. Asymptotics for γ → ∞ S. Olla - CEREMADE thermal-scattering

  25. Asymptotics for γ → ∞ ▸ creation rate: γ ∣ ν ( k )∣ 2 � γ →∞ 0 → S. Olla - CEREMADE thermal-scattering

  26. Asymptotics for γ → ∞ ▸ creation rate: γ ∣ ν ( k )∣ 2 � γ →∞ 0 → S. Olla - CEREMADE thermal-scattering

  27. ∂ t W ( t , y , k ) + ω ′ ( k ) 2 π ∂ y W ( t , y , k ) = TS ( k ) δ ( y ) + 1 k > 0 {( T ( k ) − A ( k )) W ( t , 0 + , k ) + R ( k ) W ( t , 0 − , − k )} δ ( y ) + 1 k < 0 {( T ( k ) − A ( k )) W ( t , 0 − , k ) + R ( k ) W ( t , 0 + , − k )} δ ( y ) W ( 0 , y , k ) = W 0 ( y , k ) . S ( k ) + T ( k ) − A ( k ) + R ( k ) = 0 � ⇒ W ( t , y , k ) = T is a stationary solution. S. Olla - CEREMADE thermal-scattering

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend