beat the heat
play

Beat the Heat! First-principles based modeling of micro- and - PowerPoint PPT Presentation

Technische Universitt Mnchen Beat the Heat! First-principles based modeling of micro- and macroscopic heat dissipation in heterogeneous catalysis Karsten Reuter Chemistry Department and Catalysis Research Center Technische Universitt


  1. Technische Universität München Beat the Heat! First-principles based modeling of micro- and macroscopic heat dissipation in heterogeneous catalysis Karsten Reuter Chemistry Department and Catalysis Research Center Technische Universität München

  2. Challenges across the scales Self-consistent coupling to reactive flow field and appropriate heat balance Surface chemistry: adsorption, diffusion, reaction, desorption Accurate (first-principles) energetics Quantitative transient and of individual elementary processes steady-state surface kinetics

  3. I. Integrating first-principles microkinetics into fluid dynamical simulations: Macroscopic heat dissipation

  4. Chemical kinetics: Tackling rare-event time scales k B → A k A → B � E A → B � E B → A kinetic Transition State Monte Carlo Theory TS N Z  k T  TS ( → ) i j = B k   B → i j h Z   B i A − ∆  E  → exp  i j  = Γ Molecular   � k T A   t Dynamics B ( ) dP t ∑ ∑ ( ) ( ) = − + i k P t k P t → → i j i j i j dt j j First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiers K. Reuter, in “Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System”, (Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2011). http://www.th4.ch.tum.de

  5. Surface structure and composition in the reactive environment CO oxidation at RuO 2 (110) p O (atm) 600 K 2 10 -15 10 -10 10 -5 10 +5 1 10 5 CO br /CO cus CO br /CO cus p CO (atm) T = 600 K , p O = 1 atm, p CO = 7 atm 2 1 CO br /- 10 -5 O br /O cus O br / - O br /O cus K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)

  6. Steady-state and transient parameter-free turnover frequencies TPR 350 K p CO (10 -9 atm) 0.0 1.0 2.0 3.0 TOF CO2 (10 12 mol/cm 2 s) 6 p O2 = 10 -10 atm Exp. x x x 4 x x x x x x 2 Theory x x x x x x x xx x 0 M. Rieger, J. Rogal, and K. Reuter, K. Reuter and M. Scheffler, Phys. Rev. Lett. 100, 016105 (2008) Phys. Rev. B 73, 045433 (2006)

  7. Macroscopic regime: Heat and mass transfer Computational Fluid Dynamics: T , p CO , p O 2 Stationary stagnation point flow p CO p O 2 p CO 2 T p Chemical source terms from 1p-kMC S. Matera and K. Reuter, Phys. Rev. B 82, 085446 (2010)

  8. Adiabatic limit: Surface heating p O2 = 0.3 atm u inl = 1 cm/sec no heat flux S. Matera and K. Reuter, Catal. Lett. 133,156 (2009)

  9. Isothermal limit: Mass transfer limitations T = 600 K p O2 = 0.3 atm u inl = 1 cm/sec T = const S. Matera and K. Reuter, Catal. Lett. 133, 156 (2009)

  10. Lateral channel flow: Surface heating and spatial variations p O2 = 0.3 atm p CO = 0.6 atm u inl = 10 cm/sec S. Matera and K. Reuter, in preparation

  11. II. Heat dissipation: More than just macroscale warm-up?!

  12. Really Markov ?! ? Showcase O 2 /Pd(100): 2.6eV adsorption energy released ! (at GGA/PBE level)

  13. e-h pair excitation: Time-dependent perturbation theory M. Timmer and P. Kratzer, Phys. Rev. B 79, 165407 (2009) J. Meyer and K. Reuter, New J. Phys. 13, 085010 (2011)

  14. Phonon energy sinks „from the shelf“

  15. Exploiting locality: Elastic vs. chemical forces - forces (eV/Å) Adsorbate-induced 1.0 forces 0.1 very short ranged ! 0.01

  16. QM/Me embedding - + Large-scale MM MD … with additional QM-force contributions DFT-parametrized MEAM DFT GGA/PBE 50x50x50 Pd atoms 6x3x4 (or 8x3x4) slabs LAMMPS CASTEP S.J. Clark et al., Z. Kristallogr. 220, 567 (2005) S. J. Plimpton, J. Comp. Phys. 117, 1 (1995)

  17. Forget Markov: Hot adatoms are alive! pA ( ( ( ) ( ) ) ) ~ = = = = k S T uc � π π π π mk T 2 B Z=1.5 Å J. Meyer and K. Reuter, submitted

  18. Beaten by the heat… Detailed account of heat dissipation at macroscopic and microscopic level essential to reach predictive-quality in comprehensive (nano!) catalysis modeling MMM Jörg Meyer Sebastian Matera

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend