machine programming ii c to assembly
play

Machine Programming II: C to assembly Move instructions, registers, - PDF document

University of Washington Machine Programming II: C to assembly Move instructions, registers, and operands Complete addressing mode, address computation ( leal) Arithmetic operations (including some x86 64 instructions) Condition


  1. University of Washington Machine Programming II: C to assembly � Move instructions, registers, and operands � Complete addressing mode, address computation ( leal) � Arithmetic operations (including some x86 ‐ 64 instructions) � Condition codes � Control, unconditional and conditional branches � While loops 09 April 2012 Machine Programming 1 University of Washington Three Kinds of Instructions � Perform arithmetic function on register or memory data � c = a + b; � Transfer data between memory and register � Load data from memory into register � %reg = Mem[address] � Store register data into memory � Mem[address] = %reg � Transfer control (control flow) � Unconditional jumps to/from procedures � Conditional branches 09 April 2012 Machine Programming 2

  2. University of Washington Moving Data: IA32 %eax %ecx � Moving Data %edx � movx Source , Dest %ebx � x is one of { b, w, l } i f { b l } %esi � movl Source , Dest : %edi Move 4 ‐ byte “long word” %esp � movw Source , Dest : %ebp Move 2 ‐ byte “word” � movb Source Dest : movb Source , Dest : Move 1 ‐ byte “byte” � Lots of these in typical code 09 April 2012 Machine Programming 3 University of Washington Moving Data: IA32 %eax %ecx � Moving Data %edx movl Source , Dest : %ebx � Operand Types � Operand Types %esi � Immediate: Constant integer data � Example: $0x400 , $-533 %edi � Like C constant, but prefixed with ‘$’ %esp � Encoded with 1, 2, or 4 bytes %ebp � Register: One of 8 integer registers � Example: %eax, %edx Example: %eax, %edx � But %esp and %ebp reserved for special use � Others have special uses for particular instructions � Memory: 4 consecutive bytes of memory at address given by register � Simplest example: (%eax) � Various other “address modes” 09 April 2012 Machine Programming 4

  3. University of Washington movl Operand Combinations Source Dest Src,Dest C Analog movl $0x4,%eax Reg Imm movl $-147,(%eax) Mem movl %eax,%edx Reg movl Reg Mem movl %eax,(%edx) movl (%eax),%edx Mem Reg Cannot do memory ‐ memory transfer with a single instruction. How do you copy from a memory location to another then? 09 April 2012 Machine Programming 5 University of Washington movl Operand Combinations Source Dest Src,Dest C Analog Reg movl $0x4,%eax temp = 0x4; Imm Mem movl $-147,(%eax) *p = -147; Reg movl %eax,%edx temp2 = temp1; movl Reg movl %eax,(%edx) *p = temp; Mem Mem Reg movl (%eax),%edx temp = *p; 09 April 2012 Machine Programming 6

  4. University of Washington Memory vs. registers � Why both? � Performance? � Usage difference? 09 April 2012 Machine Programming 7 University of Washington Simple Memory Addressing Modes � Normal (R) Mem[Reg[R]] � Register R specifies memory address movl (%ecx),%eax � Displacement D(R) Mem[Reg[R]+D] � Register R specifies start of memory region � Constant displacement D specifies offset Constant displacement D specifies offset movl 8(%ebp),%edx 09 April 2012 Machine Programming 8

  5. University of Washington Using Simple Addressing Modes swap: pushl %ebp Set movl %esp,%ebp Up p pushl %ebx p void swap(int xp, int yp) void swap(int *xp, int *yp) { movl 12(%ebp),%ecx int t0 = *xp; int t1 = *yp; movl 8(%ebp),%edx *xp = t1; movl (%ecx),%eax Body *yp = t0; movl (%edx),%ebx } movl %eax,(%edx) movl %ebx,(%ecx) movl -4(%ebp),%ebx movl %ebp,%esp Finish popl %ebp ret 09 April 2012 Machine Programming 9 University of Washington Understanding Swap • void swap(int *xp, int *yp) Stack • { • (in memory) int t0 = *xp; Offset int t1 = *yp; int t1 = *yp; 12 yp *xp = t1; *yp = t0; 8 xp } 4 Rtn adr 0 Old % ebp %ebp -4 Old % ebx Register Value %ecx %ecx yp yp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %edx xp movl 8(%ebp),%edx # edx = xp %eax t1 movl (%ecx),%eax # eax = *yp (t1) %ebx t0 movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 10

  6. University of Washington Address Understanding Swap 0x124 123 456 0x120 0x11c %eax 0x118 Offset %edx 0x114 0x114 yp 12 0x120 0x110 %ecx xp 8 0x124 0x10c %ebx 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 11 University of Washington Address Understanding Swap 123 0x124 456 0x120 0x11c %eax 0x118 Offset %edx 0x114 0 yp 12 0x120 0x120 %ecx 0x120 0x110 xp 8 0x124 0x10c %ebx 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # ecx = yp # %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 12

  7. University of Washington Address Understanding Swap 0x124 123 456 0x120 0x11c %eax 0x118 Offset %edx 0x124 0x114 0x114 yp 12 0x120 0x110 %ecx 0x120 xp 8 0x124 0x124 0x10c %ebx 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 13 University of Washington Address Understanding Swap 123 0x124 456 456 0x120 0x11c %eax 456 0x118 Offset %edx 0x124 0x114 0 yp 12 0x120 %ecx 0x120 0x110 xp 8 0x124 0x10c %ebx 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 14

  8. University of Washington Address Understanding Swap 0x124 123 123 456 0x120 0x11c %eax 456 0x118 Offset %edx 0x124 0x114 0x114 yp 12 0x120 0x110 %ecx 0x120 xp 8 0x124 0x10c %ebx 123 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 15 University of Washington Address Understanding Swap 456 0x124 456 0x120 0x11c %eax 456 456 0x118 Offset %edx 0x124 0x114 0 yp 12 0x120 %ecx 0x120 0x110 xp 8 0x124 0x10c %ebx 123 123 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 16

  9. University of Washington Address Understanding Swap 0x124 456 123 0x120 0x11c %eax 456 0x118 Offset %edx 0x124 0x114 0x114 yp 12 0x120 0x110 %ecx 0x120 xp 8 0x124 0x10c %ebx 123 123 4 Rtn adr 0x108 %esi 0 %ebp 0x104 %edi -4 0x100 %esp movl 12(%ebp),%ecx l 12(% b ) % # # ecx = yp %ebp 0x104 movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx 09 April 2012 Machine Programming 17 University of Washington x86 ‐ 64 Integer Registers %rax %r8 %eax %r8d %rbx %r9 %ebx %r9d %rcx %r10 %ecx %r10d %rdx %r11 %edx %r11d %rsi %r12 %esi %r12d %rdi %r13 %edi %r13d %rsp %r14 %esp %r14d %rbp %r15 %ebp %r15d � Extend existing registers. Add 8 new ones. � Make %ebp / %rbp general purpose

  10. University of Washington Instructions � Long word l (4 Bytes) ↔ Quad word q (8 Bytes) � New instructions: � movl → movq � addl → addq � sall → salq � etc. � 32 ‐ bit instructions generate 32 ‐ bit results, � What about the other 32 bits in the register? � Set higher order bits of destination register to 0 � Example: addl University of Washington Swap in 32 ‐ bit Mode swap: void swap(int *xp, int *yp) pushl %ebp { movl %esp,%ebp Setup int t0 = *xp; int t0 = *xp; pushl %ebx int t1 = *yp; *xp = t1; movl 12(%ebp),%ecx *yp = t0; movl 8(%ebp),%edx } movl (%ecx),%eax Body movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) movl -4(%ebp),%ebx movl %ebp,%esp Finish popl %ebp ret

  11. University of Washington Swap in 64 ‐ bit Mode void swap(int *xp, int *yp) swap: { movl (%rdi), %edx int t0 = *xp; movl (%rsi), %eax i t t1 int t1 = *yp; * movl l % %eax, (%rdi) (% di) *xp = t1; movl %edx, (%rsi) *yp = t0; retq } � Operands passed in registers (why useful?) � First ( xp ) in %rdi , second ( yp ) in %rsi � 64 ‐ bit pointers 64 bi i � No stack operations required � 32 ‐ bit data � Data held in registers %eax and %edx � movl operation University of Washington Swap Long Ints in 64 ‐ bit Mode void swap_l swap_l: (long int *xp, long int *yp) movq (%rdi), %rdx { { movq movq (%rsi) (%rsi), %rax %rax long int t0 = *xp; movq %rax, (%rdi) long int t1 = *yp; movq %rdx, (%rsi) *xp = t1; retq *yp = t0; } � 64 bit data � 64 ‐ bit data � Data held in registers %rax and %rdx � mov q operation � “q” stands for quad ‐ word

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend