m87
play

M87 Avery E. Broderick Sheperd Doeleman (MIT Haystack) Avi Loeb - PowerPoint PPT Presentation

VLBI observations of jets in M87 Avery E. Broderick Sheperd Doeleman (MIT Haystack) Avi Loeb (Harvard) Vincent Fish (MIT Haystack) Ramesh Narayan (Harvard) Alan Rogers (MIT Haystack) Mark Reid (Smithsonian) Dimitrios Psaltis (Arizona)


  1. VLBI observations of jets in M87 Avery E. Broderick Sheperd Doeleman (MIT Haystack) Avi Loeb (Harvard) Vincent Fish (MIT Haystack) Ramesh Narayan (Harvard) Alan Rogers (MIT Haystack) Mark Reid (Smithsonian) Dimitrios Psaltis (Arizona) Mareki Honma (NAOJ) Tim Johannsen (Arizona/UW-PI-CITA) Fermi Bubbles Workshop 12.4.2013

  2. mm-VLBI observations of jets in M87 Avery E. Broderick Sheperd Doeleman (MIT Haystack) Avi Loeb (Harvard) Vincent Fish (MIT Haystack) Ramesh Narayan (Harvard) Alan Rogers (MIT Haystack) Mark Reid (Smithsonian) Dimitrios Psaltis (Arizona) Mareki Honma (NAOJ) Tim Johannsen (Arizona/UW-PI-CITA) Fermi Bubbles Workshop 12.4.2013

  3. mm-VLBI observations of jets in M87 & Sgr A* Avery E. Broderick Sheperd Doeleman (MIT Haystack) Avi Loeb (Harvard) Vincent Fish (MIT Haystack) Ramesh Narayan (Harvard) Alan Rogers (MIT Haystack) Mark Reid (Smithsonian) Dimitrios Psaltis (Arizona) Mareki Honma (NAOJ) Tim Johannsen (Arizona/UW-PI-CITA) Fermi Bubbles Workshop 12.4.2013

  4. SGR A* & M87 ARE THE SAME! Very sub-Eddington: 𝑴/𝑴 𝑭𝒆𝒆 ~𝟐𝟏 −𝟘 & 𝟐𝟏 −𝟕 ≪ 𝟏. 𝟏𝟐 • • Flat radio spectrum with spectral break at ~1mm Similar 𝒐 𝒇 , 𝑪~𝟐𝟏𝟏 G • SGR A* & M87 ARE DIFFERENT! Sgr A* M87 VLA (NRAO) What ingredient in jet production is missing in Sgr A*? (Zhao & Goss, 1998) (Is an ingredient missing?) Fermi Bubbles Workshop 12.4.2013

  5. CARMA Haystack SMA, ARO-SMT • Earth-sized mm/sub-mm VLBI array LMT JCMT • Existing and Planned telescopes. APEX, Accesses resolutions of ~10 m as, • ASTE, IRAM Plateau de ALMA  Sufficient to resolve horizons of M87 & Sgr A* 30m Bure SPT APEX, ASTE, ALMA SPT Fermi Bubbles Workshop 12.4.2013

  6. FIRST DATA! CARMA SMA, Data already exists on JCMT SMT Hawaii-CARMA-SMT • Doeleman et al., Nature, 455, 78 (2008) 𝐸~37 ± 14 𝜈𝑏𝑡~0.7 𝐸 𝐼 • Fish et al., ApJ, 727, 36 (2011) • Doeleman et al., Science, 338, 355 (2012) Fermi Bubbles Workshop 12.4.2013

  7. CARMA Haystack SMA, ARO-SMT LMT JCMT APEX, ASTE, IRAM Plateau de ALMA 30m Bure SPT 11 13 12 10 7 8 9 APEX, ASTE, ALMA SPT Courtesy of Vincent Fish Fermi Bubbles Workshop 12.4.2013

  8. THE STATE OF EHT DATA TODAY Sgr A* M87 M87 - Fermi Bubbles Workshop 12.4.2013

  9. SPIN OF SGR A* PHYSICAL MODELS FOR LOW-LUMINOSITY AGN Empirical Priors Modeling Priors Fermi Bubbles Workshop 12.4.2013

  10. SPIN OF SGR A* PHYSICAL MODELS FOR LOW-LUMINOSITY AGN Empirical Priors Modeling Priors Low Spin High Spin Fermi Bubbles Workshop 12.4.2013

  11. SPIN OF SGR A* a~0 +0.64+0.86 q =68 +5+8 -20-28 deg. x =-52 +17+33 -15-24 deg. GETTING AT SGR A*’S SPIN Inclination Our accretion model is wrong! Observations are easy to fit Non-accretion physics is Spin Magnitude important! Fermi Bubbles Workshop 12.4.2013

  12. SPIN OF SGR A* Fermi Bubbles Workshop 12.4.2013

  13. SPIN OF SGR A* Fermi Bubbles Workshop 12.4.2013

  14. SPIN OF SGR A* Fermi Bubbles Workshop 12.4.2013

  15. SPIN OF SGR A* SPIN/INCLINATION FROM DISK LENSE-THIRRING PRECESSION 𝜘, 𝜒 , Θ, Φ 0 , r o , a, dir Fermi Bubbles Workshop 12.4.2013

  16. SPIN OF SGR A* SPIN/INCLINATION FROM DISK LENSE-THIRRING PRECESSION 𝜘, 𝜒 , Θ, Φ 0 , r o , a, dir Fermi Bubbles Workshop 12.4.2013

  17. SPIN OF SGR A* SGR A*’S NATURAL PRECESSION RATE  Comparable to timescales 1/2 𝑠 𝑝5/2 5/2 𝑞𝑠𝑓𝑑 ~ 𝑀 𝑒𝑗𝑡𝑙 ~ 𝐻𝑁 10 𝑏 sin Θ ~ 2 𝑠 𝑠 𝑝 𝑗 𝑈 yr already probed by the EHT! 𝑑 3 10 3 𝜐 𝑀𝑈 𝑏 S2 periapse ~3 × 10 3 𝐻𝑁/𝑑 2 Fermi Bubbles Workshop 12.4.2013

  18. SPIN OF SGR A* SPIN-DISK SIZE POSTERIOR PROBABILITY Sgr A*: Low spin (if at all)! Fermi Bubbles Workshop 12.4.2013

  19. SPIN OF M87 MODELING M87: GRMHD JETS 𝐸 = 40 ± 2 𝜈𝑏𝑡 • Blanford-Znajek/Blandford-Payne: Electromagnetic extraction of black hole spin/disk angular momentum. • Large-scale ordered magnetic fields • Canonical Structure: • MHD Disk • Magnetically dominated wind • Force-free, roughly parabolic jet McKinney & Blandford (2009) Fermi Bubbles Workshop 12.4.2013

  20. SPIN OF M87 MODELING M87: GRMHD JETS 𝐸 = 40 ± 2 𝜈𝑏𝑡 M87 Jet Widths • Blanford-Znajek/Blandford-Payne: Electromagnetic extraction of black hole spin/disk angular momentum. • Large-scale ordered magnetic fields • Canonical Structure: • MHD Disk • Magnetically dominated wind • Force-free, roughly parabolic jet McKinney & Blandford (2009) Fermi Bubbles Workshop 12.4.2013

  21. SPIN OF M87 MODELING M87: GRMHD JETS 𝐸 = 40 ± 2 𝜈𝑏𝑡 M87 Jet Widths • Blanford-Znajek/Blandford-Payne: Electromagnetic extraction of black hole spin/disk angular momentum. • Large-scale ordered magnetic fields • Canonical Structure: • MHD Disk • Magnetically dominated wind • Force-free, roughly parabolic jet McKinney & Blandford (2009) Hada et al. (2011) Fermi Bubbles Workshop 12.4.2013

  22. SPIN OF M87 SPIN OF M87: ROUGH CUT Give non-spinning black holes best chance: • Jets are disk driven • Jets turn on (nearly) immediately  Jets start out slow ( 𝚫~𝟐 − 𝟑 ), Chris Fach emission scale ~ ISCO Fermi Bubbles Workshop 12.4.2013

  23. SPIN OF M87 SPIN OF M87: ROUGH CUT EHT size limit Give non-spinning black holes best chance: • Jets are disk driven • Jets turn on (nearly) immediately  Jets start out slow ( 𝚫~𝟐 − 𝟑 ), Chris Fach emission scale ~ ISCO Fermi Bubbles Workshop 12.4.2013

  24. SPIN OF M87 MODELING M87: GRMHD JETS • Blanford-Znajek/Blandford-Payne: Electromagnetic extraction of black hole spin/disk angular momentum. • Large-scale ordered magnetic fields • Canonical Structure: • MHD Disk • Magnetically dominated wind • Force-free, roughly parabolic jet McKinney & Blandford (2009) Fermi Bubbles Workshop 12.4.2013

  25. SPIN OF M87 “SIMPLE” JET MODELS • Axisymmetric & Stationary (+poloidal struc) • Particle inertia irrelevant: 𝑮 𝑀 = 𝜍𝑭 + 𝒌 × 𝑪 = 0 • + Boundary conditions at disk/black hole! Fermi Bubbles Workshop 12.4.2013

  26. SPIN OF M87 “SIMPLE” JET MODELS low RΩ • Axisymmetric & Stationary (+poloidal struc) • Particle inertia irrelevant: 𝑮 𝑀 = 𝜍𝑭 + 𝒌 × 𝑪 = 0 • + Boundary conditions at disk/black hole! Fermi Bubbles Workshop 12.4.2013

  27. SPIN OF M87 “SIMPLE” JET MODELS intermediate RΩ • Axisymmetric & Stationary (+poloidal struc) • Particle inertia irrelevant: 𝑮 𝑀 = 𝜍𝑭 + 𝒌 × 𝑪 = 0 • + Boundary conditions at disk/black hole! Fermi Bubbles Workshop 12.4.2013

  28. SPIN OF M87 “SIMPLE” JET MODELS large RΩ • Axisymmetric & Stationary (+poloidal struc) • Particle inertia irrelevant: 𝑮 𝑀 = 𝜍𝑭 + 𝒌 × 𝑪 = 0 𝜄 • + Boundary conditions at disk/black hole! 𝑆Ω ~ 𝐶 𝑄 tan 𝜄 ~ 𝑤 𝐵 −1 𝐶 𝜚 ~𝛾 ∞ Choosing BCs = choosing Ω (r) & Γ ∞ Fermi Bubbles Workshop 12.4.2013

  29. SPIN OF M87 “SIMPLE” JET MODELS large RΩ • Axisymmetric & Stationary (+poloidal struc) • Particle inertia irrelevant: 𝑮 𝑀 = 𝜍𝑭 + 𝒌 × 𝑪 = 0 𝜄 Disk Friendly! • + Boundary conditions at disk/black hole! 𝑆Ω ~ 𝐶 𝑄 tan 𝜄 ~ 𝑤 𝐵 Ω −1 𝐶 𝜚 ~𝛾 ∞ High spin low spin Choosing BCs = choosing Ω (r) & Γ ∞ 𝑠 Fermi Bubbles Workshop 12.4.2013

  30. SPIN OF M87 FULL MHD VS. SIMPLE FORCE FREE Jet Wind Disk Fermi Bubbles Workshop 12.4.2013

  31. SPIN OF M87 FROM STRUCTURE TO EMISSION Particle acceleration in the jet! Dexter, McKinney & Agol (2012) AEB & Loeb (2009) Fermi Bubbles Workshop 12.4.2013

  32. SPIN OF M87 RESOLUTION, COOLING TIMES & PARAMETERIZING IGNORANCE • Particle acceleration Cooling smoothed over jet on EHT length from scales! injection at 100 G • Places lower limit on density of nonthermal electrons • Parameterize by typical Lensed Horizon size load radius, and conserve thereafter. Fermi Bubbles Workshop 12.4.2013

  33. SPIN OF M87 EMPIRICAL PRIORS • Optical super-luminal motion of “knots” (6c at >1”, Γ ∞ ~𝟔 ) Courtesy of Craig Walker • Radio super-luminal motion of “knots” (~2.3c at few mas) • Orientation of large-scale jet (E-W) • Core Dominance • Spectra? Fermi Bubbles Workshop 12.4.2013

  34. SPIN OF M87 EMPIRICAL PRIORS: SPECTRA OF WHAT? >1” 0.1” - 1” 1 mas- 0.1” <1 mas Fermi Bubbles Workshop 12.4.2013

  35. SPIN OF M87 EMPIRICAL PRIORS: SPECTRA OF WHAT? Strong non-VLBI constraint on jet models! >1” 0.1” - 1” 1 mas- 0.1” <1 mas Fermi Bubbles Workshop 12.4.2013

  36. SPIN OF M87 A MODEL FAMILY FOR M87 Load radius Fermi Bubbles Workshop 12.4.2013

  37. SPIN OF M87 A MODEL FAMILY FOR M87 Load radius Black hole spin Fermi Bubbles Workshop 12.4.2013

  38. FIRST FITS: EXISTENCE 20 min 𝜓^2 /DOF ~ 97/180! 102 (cf. Gaussian ~ 130/184!) Loading Radius in 𝜓 2 𝐻𝑁/𝑑 2 10 2 97 0 Black hole spin Fermi Bubbles Workshop 12.4.2013

  39. SPIN OF M87 FIRST FITS: SOME CHECKS Jet position angle (E of N), from mm-VLBI alone! 𝑄 𝑆, 𝜊 𝑄 ~70 ∘ ! Loading radius Fermi Bubbles Workshop 12.4.2013

  40. FIRST FITS: SOME CHECKS Fermi Bubbles Workshop 12.4.2013

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend