m monoid parsing and reduct generation
play

M-monoid parsing and reduct generation Richard Mrbitz 15th December - PowerPoint PPT Presentation

M-monoid parsing and reduct generation Richard Mrbitz 15th December 2017 1 2 Parsing? Given G = ( N , , S , R ) N = { S , NP , VP , NNP , . . . } = { Fruit , bananas , . . . } R = { S NP VP , NNP Fruit , . . . } To


  1. M-monoid parsing and reduct generation Richard Mörbitz 15th December 2017 1

  2. 2 Parsing? Given G = ( N , Σ , S , R ) • N = { S , NP , VP , NNP , . . . } • Σ = { Fruit , bananas , . . . } • R = { S → NP VP , NNP → Fruit , . . . } To parse e = Fruit fmies like bananas.

  3. Parse trees S bananas NNS NP like VBP VP fmies NNP Fruit NNP NP bananas S NNS NP like IN PP fmies VBZ VP Fruit NNP NP 3

  4. Abstract syntax trees like bananas NNS like VBP NP fmies Fruit NNP NNP NP VP NNS bananas IN NP VBZ PP NP VP NNP Fruit 4 fmies S → S → NP → VP → NP → VP → NNP → VBZ → PP → NNP → NNP → VBP → NP → IN → NP → NNS → NNS →

  5. Recognition fmies bananas NNS like VBP NP fmies Fruit NNP NNP NP VP NNS like IN NP bananas 5 NP VP VBZ PP NNP Fruit ⊤ ⊤ ⊤ S → S → ⊤ ⊤ ⊤ ⊤ NP → VP → NP → VP → ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ NNP → VBZ → PP → NNP → NNP → VBP → NP → ⊤ ⊤ ⊤ IN → NP → NNS → ⊤ NNS →

  6. Recognition fmies bananas NNS like VBP NP fmies Fruit NNP NNP NP VP bananas NNS like IN NP 5 VBZ PP NP VP NNP Fruit ⊤ ∨ ⊤ ⊤ S → S → ∧ ∧ ⊤ ⊤ ⊤ ⊤ NP → VP → NP → VP → ∧ ∧ ∧ ∧ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ NNP → VBZ → PP → NNP → NNP → VBP → NP → ∧ ∧ ⊤ ⊤ ⊤ IN → NP → NNS → ∧ ⊤ NNS →

  7. String probability fmies bananas NNS like VBP NP fmies Fruit NNP NNP NP VP bananas NNS like IN NP 6 VBZ PP NP VP NNP Fruit 0 . 0000495 + 0 . 000048 0 . 0000015 S → S → × × 0 . 04 0 . 0024 0 . 001 0 . 003 NP → VP → NP → VP → × × × × 0 . 2 0 . 4 0 . 012 0 . 2 0 . 1 0 . 5 0 . 06 NNP → VBZ → PP → NNP → NNP → VBP → NP → × × 0 . 3 0 . 4 0 . 06 IN → NP → NNS → × 0 . 3 NNS →

  8. Probability of the most likely derivation fmies bananas NNS like VBP NP fmies Fruit NNP NNP NP VP bananas NNS like IN NP 7 VBZ PP NP VP NNP Fruit 0 . 000048 max 0 . 000048 0 . 0000015 S → S → × × 0 . 04 0 . 0024 0 . 001 0 . 003 NP → VP → NP → VP → × × × × 0 . 2 0 . 4 0 . 012 0 . 2 0 . 1 0 . 5 0 . 06 NNP → VBZ → PP → NNP → NNP → VBP → NP → × × 0 . 3 0 . 4 0 . 06 IN → NP → NNS → × 0 . 3 NNS →

  9. Generic computation fmies bananas NNS like VBP NP fmies Fruit NNP NNP NP VP bananas NNS like IN NP 8 NNP VBZ PP NP VP Fruit parse( e ) ⊕ S → S → ⊗ ⊗ NP → VP → NP → VP → ⊗ ⊗ ⊗ ⊗ NNP → VBZ → PP → NNP → NNP → VBP → NP → ⊗ ⊗ IN → NP → NNS → ⊗ NNS →

  10. Semiring parsing

  11. Semiring Defjnition (Semiring) 9 A semiring ( S , ⊕ , ⊗ , 0 , 1 ) is an algebraic structure, such that • ( S , ⊕ , 0 ) is a commutative monoid • ( S , ⊗ , 1 ) is a monoid, • ⊗ is left-distributive and right-distributive over ⊕ , and • a ⊗ 0 = 0 = 0 ⊗ a for every a ∈ S . S is complete if Σ ⊕ exists.

  12. Semiring parsing Instances: 10 Algorithm for generic complete semiring ( S , ⊕ , ⊗ , 0 , 1 ) [Goo99] Recognition ( {⊤ , ⊥} , ∨ , ∧ , ⊥ , ⊤ ) String probability ( R ∞ 0 , + , × , 0 , 1 ) Probability of best derivation ( R 1 0 , max , × , 0 , 1 ) Derivation forest ( 2 E 1 , ∪ , · , ∅ , { ε } ) 1 set of derivations (elements of R ∗ )

  13. M-monoid parsing

  14. Knuth’s generalization of Dijkstra’s algorithm [Knu77] B 0 C 11 A G = ( N , Σ , C , R ) , with • N = { A , B , C } • Σ = { α, β, γ, ˆ ( , ˆ γ , } β ) , ˆ • R = { C → γ ( A , B ) , B → α β ( A , A ) , A → α } Mapping val : Σ ∗ → R ∞ 0 , 0 ) k → R ∞ each σ ∈ Σ is a mapping σ : ( R ∞ Generalization ( R ∞ 0 , ≤ ) � ( S , � ) [Jun06]

  15. Multioperator monoid Defjnition (Multioperator monoid) 12 An M-monoid is an algebraic structure ( S , ⊕ , 0 , Ω) , such that • ( S , ⊕ , 0 ) is a commutative monoid, • Ω is a set of operations on S , such that ∀ ω ∈ Ω : ω ( s 1 , . . . , s k ) = 0 if ∃ i : s i = 0 • 0 k ∈ Ω for all k ∈ N , 0 k : S k → S , such that 0 k ( s 1 , . . . , s k ) = 0. S is complete if Σ ⊕ exists.

  16. M-monoid parsing problem Given 13 1. a complete M-monoid ( S , Σ ⊕ ) with ( S , ⊕ , 0 , Ω) , 2. a weighted LCFRS ( G , wt) over S where G = ( N , Σ , Z , R ) is an LCFRS over ∆ and wt : R → Ω , and 3. a sentence e = e 1 . . . e n with n ≥ 1 and e i ∈ ∆ Σ ⊕ Compute parse( e ) = h ( d ) , d ∈ ( T R ) Z : � π Σ ( d ) � = e where h : T R → S is the homomorphism from T R to ( S , Ω) .

  17. Weighted deductive parsing [Ned03] SCAN: Goal: RULE: 14 Inference rules Items I = { [ A ,� κ ] | A ∈ N ,� κ range vector over e } if ρ = ( A → � e i � ) in R [ A , ( i − 1 , i )] [ B 1 ,� κ 1 ] ... [ B k ,� κ k ] if ρ = ( A → σ ( B 1 , . . . , B k )) in R [ A ,σ ( � κ 1 ,...,� κ k )] [ Z , ( 0 , | e | )]

  18. M-monoid parsing algorithm Input 15 1. an M-monoid ( S , ⊕ , 0 , Ω) , 2. an LCFRS − G = ( N , Σ , Z , R ) over ∆ , and wt : R → Ω , 3. a function select : 2 I → I specifjc to the M-monoid, and 4. a sentence e = e 1 . . . e n with n ≥ 1 and e i ∈ ∆ Variables V : I → S mapping Output parse( e )

  19. 16 6: 14: 13: 12: RULE 11: 9: 8: 10: 5: 3: Algorithm 2.1 M-monoid parsing for LCFRS − 1: A , C ← ∅ 2: for each A ∈ N and � κ range vector over e do V ([ A ,� κ ]) ← 0 4: for each ρ = ( A → σ ) in R and [ A ,� κ ] generated by SCAN [ A ,� κ ] do V ([ A ,� κ ]) ← V ([ A ,� κ ]) ⊕ wt( ρ )() A ← A ∪ { [ A ,� κ ] } 7: while A � = ∅ do [ A ,� κ ] ← select ( A ) A ← A \ { [ A ,� κ ] } C ← C ∪ { [ A ,� κ ] } for each ρ = ( B → σ ( B 1 , . . . B k )) in R and [ B , � η ] deduced by ∗ η ] from [ A ,� κ ] and other items from C do [ B ,� η ]) ← V ([ B , � η ]) ⊕ wt( ρ )( V ([ B 1 ,� V ([ B , � κ 1 ]) , . . . , V ([ B k ,� κ k ])) if [ B , � η ] �∈ C then A ← A ∪ { [ B , � η ] } 15: return V ([ Z , ( 0 , n )])

  20. Reduct generation with M-monoid parsing

  21. Reduct of a grammar and a sentence Given 17 • an LCFRS G = ( N , Σ , Z , R ) over ∆ (RTG-notation) • a sentence e ∈ ∆ ∗ Compute LCFRS G ⊲ ψ e = ( N ′ , Σ , Z ′ , R ′ ) , such that 1. � L ( G ⊲ ψ e ) � LCFRS = � L ( G ) � LCFRS ∩ { e } , and 2. with the mapping ψ : N ′ → N there exists a bijective mapping from the ASTs of G ⊲ ψ e to the ASTs of G

  22. Preliminary defjnitions Prototype rules: Prototype nonterminals: 18 P R = { [ A ,� κ ] → σ ([ B 1 ,� κ 1 ] , . . . [ B k ,� κ k ]) | ( A → σ ( B 1 , . . . , B k )) ∈ R ∧ � κ,� κ 1 , . . . ,� κ k are range vectors over e } P N = { [ A ,� κ ] | A ∈ N ∧ � κ is a range vector over e }

  23. The reduct problem as an instance of M-monoid parsing Given: 19 1. ( G , Σ ∪ ) , where • G = ( 2 P N × 2 P R , ∪ , ∅ × ∅ , Ω REDUCT ) is the reduct M-monoid • Σ ∪ i ∈ I s i = � i ∈ I s i is used as the infjnitary sum operation 2. ( G , wt) for an arbitrary G over ∆ and wt : R → Ω REDUCT 3. an arbitrary e ∈ ∆ ∗ Compute: parse( e ) = ( { A ∈ N ′ | A is of the form [ Z ,� κ ] } , R ′ ) Then G ⊲ ψ e = ( N ′ , Σ , Z ′ , R ′ ), where • R ′ = v where ( u , v ) = parse( e ) , • N ′ = { [ A ,� κ ] is the left-hand side of a rule in R ′ } , κ ] | [ A ,� • Z ′ = [ Z , ( 0 , | e | )]

  24. 20 The operations of Ω REDUCT • if ρ is of the form A → � w � , then ω ρ () = �{ [ A , ( i − 1 , i )] | e i = w } , { [ A , ( i − 1 , i )] → � w � | e i = w }� . • if ρ is of the form A → σ ( B 1 , . . . , B k ) , then ω ρ (( U 1 , V 1 ) , . . . , ( U k , V k )) = � U , V � , where U = { [ A , σ ( � η k )] | ( � η k ) ∈ fit σ ( U 1 , . . . , U k ) } η 1 , . . . , � η 1 , . . . , � � V = V i ∪ { [ A , σ ( � η k )] → σ ([ B 1 , � η 1 ] , . . . , [ B k , � η k ]) | η 1 , . . . , � 1 ≤ i ≤ k ( � η k ) ∈ fit σ ( U 1 , . . . , U k ) } η 1 , . . . , �

  25. Example: reduct generation 3 bananas 4 0 Fruit 1 21 2 like 3 1 fmies 2 [ NNP , ( 0 , 1 )] [ NNP , ( 1 , 2 )] [ VBZ , ( 1 , 2 )] [ IN , ( 2 , 3 )] [ VBP , ( 2 , 3 )] [ NNS , ( 3 , 4 )] � Fruit � � fmies � � fmies � � like � � like � � bananas �

  26. Example: reduct generation 3 bananas 4 0 Fruit 1 21 1 fmies 2 2 like 3 [ NP , ( 0 , 1 )] � x 1 1 � [ NNP , ( 0 , 1 )] [ NNP , ( 1 , 2 )] [ VBZ , ( 1 , 2 )] [ IN , ( 2 , 3 )] [ VBP , ( 2 , 3 )] [ NNS , ( 3 , 4 )] � Fruit � � fmies � � fmies � � like � � like � � bananas �

  27. Example: reduct generation 0 Fruit 1 1 x 2 21 3 bananas 4 1 fmies 2 2 like 3 [ NP , ( 0 , 1 )] [ NP , ( 0 , 2 )] � x 1 1 � � x 1 1 � [ NNP , ( 0 , 1 )] [ NNP , ( 1 , 2 )] [ VBZ , ( 1 , 2 )] [ IN , ( 2 , 3 )] [ VBP , ( 2 , 3 )] [ NNS , ( 3 , 4 )] � Fruit � � fmies � � fmies � � like � � like � � bananas �

  28. Example: reduct generation 0 Fruit 1 1 x 2 21 3 bananas 4 1 fmies 2 2 like 3 [ NP , ( 0 , 1 )] [ NP , ( 0 , 2 )] � x 1 1 � � x 1 1 � [ NNP , ( 0 , 1 )] [ NNP , ( 1 , 2 )] [ VBZ , ( 1 , 2 )] [ IN , ( 2 , 3 )] [ VBP , ( 2 , 3 )] [ NNS , ( 3 , 4 )] � Fruit � � fmies � � fmies � � like � � like � � bananas �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend