localization from incomplete noisy distance measurements
play

Localization from Incomplete Noisy Distance Measurements Adel - PowerPoint PPT Presentation

Localization from Incomplete Noisy Distance Measurements Adel Javanmard and Andrea Montanari Stanford University August 3, 2011 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 1 / 47 A chemistry question Which physical


  1. Localization from Incomplete Noisy Distance Measurements Adel Javanmard and Andrea Montanari Stanford University August 3, 2011 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 1 / 47

  2. A chemistry question Which physical conformations are produced by given chemical bonds? Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 2 / 47

  3. Other Motivations (a) Manifold Learning (b) Sensor Net. Localization (c) Indoor Positioning Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 3 / 47

  4. General ‘geometric inference’ problem Given partial/noisy information about a cloud of points. Reconstruct the points positions. Notes Positions can be reconstructed up to rigid motions Well-posed problem only if G is connected In general, the problem (even uniqueness of reconstruction) is NP-hard [Saxe 1979] Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 4 / 47

  5. General ‘geometric inference’ problem Given partial/noisy information about a cloud of points. Reconstruct the points positions. Notes Positions can be reconstructed up to rigid motions Well-posed problem only if G is connected In general, the problem (even uniqueness of reconstruction) is NP-hard [Saxe 1979] Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 4 / 47

  6. This talk 0.5
 0
 ‐0.5
 ‐0.5
 0
 0.5
 R.G.G. G ✭ n ❀ r ✮ x 1 ❀ ✁ ✁ ✁ ❀ x n ✷ ❬ � 0 ✿ 5 ❀ 0 ✿ 5 ❪ d r ✕ ☛ ✭ log n ❂ n ✮ 1 ❂ d Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 5 / 47

  7. This talk 0.5
 0
 ‐0.5
 0.5
 ‐0.5
 0
 adversarial noise R.G.G. G ✭ n ❀ r ✮ ❥ ⑦ d 2 ij � d 2 x 1 ❀ ✁ ✁ ✁ ❀ x n ✷ ❬ � 0 ✿ 5 ❀ 0 ✿ 5 ❪ d ij ❥ ✔ ✁ r ✕ ☛ ✭ log n ❂ n ✮ 1 ❂ d Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 6 / 47

  8. Related work Triangulation Multidimensional scaling Divide and conquer (Singer 2008) Few performance guarantees, especially in presence of noise Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 7 / 47

  9. Outline SDP relaxation and robust reconstruction 1 Lower bound 2 Rigidity theory and upper bound 3 Discussion 4 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 8 / 47

  10. SDP relaxation and robust reconstruction Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 9 / 47

  11. Optimization formulation n ❳ ❦ x i ❦ 2 minimize 2 i ❂ 1 ☞ ☞ ☞ ☞ 2 � ❡ ☞ ❦ x i � x j ❦ 2 d 2 subject to ☞ ✔ ✁ ij Nonconvex Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 10 / 47

  12. Optimization formulation n ❳ minimize Q ii i ❂ 1 ☞ ☞ ☞ ☞ ☞ Q ii � 2 Q ij ✰ Q jj � ❡ d 2 subject to ☞ ✔ ✁ ij Q ij ❂ ❤ x i ❀ x j ✐ Nonconvex Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 11 / 47

  13. Optimization formulation (better notation) minimize Tr ✭ Q ✮ ☞ ☞ ☞ ☞ ☞ ❤ M ij ❀ Q ✐ � ❡ d 2 subj ✿ to ☞ ✔ ✁ ij Q ij ❂ ❤ x i ❀ x j ✐ e ij e T ❂ ij ❀ M ij e ij ❂ ✭ 0 ❀ ✿ ✿ ✿ ❀ 0 ❀ ✰ 1 ❀ 0 ❀ ✿ ✿ ✿ ❀ 0 ❀ � 1 ❀ 0 ❀ ✿ ✿ ✿ ❀ 0 ✮ ⑤④③⑥ ⑤④③⑥ i j Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 12 / 47

  14. Semidefinite programing relaxation minimize Tr ✭ Q ✮ ☞ ☞ ☞ ☞ ☞ ❤ M ij ❀ Q ✐ � ❡ d 2 subj ✿ to ☞ ✔ ✁ ij ✭ ✭✭✭✭✭✭ Q ✗ 0 Q ij ❂ ❤ x i ❀ x j ✐ e ij e T ❂ ij ❀ M ij e ij ❂ ✭ 0 ❀ ✿ ✿ ✿ ❀ 0 ❀ ✰ 1 ❀ 0 ❀ ✿ ✿ ✿ ❀ 0 ❀ � 1 ❀ 0 ❀ ✿ ✿ ✿ ❀ 0 ✮ ⑤④③⑥ ⑤④③⑥ i j Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 13 / 47

  15. Semidefinite programing relaxation SDP-based Localization Input : Distance measurements ❡ d ij , ✭ i ❀ j ✮ ✷ G Output : Low-dimensional coordinates x 1 ❀ ✿ ✿ ✿ ❀ x n ✷ R d 1: Solve the following SDP problem: minimize Tr ✭ Q ✮ , ☞ ☞ ☞ ✔ ✁ , ☞ ❤ M ij ❀ Q ✐ � ❡ d 2 s.t. ✭ i ❀ j ✮ ✷ G , ij Q ✗ 0. Eigendecomposition Q ❂ U ✝ U T ; 2: Top d e-vectors X ❂ U d ✝ 1 ❂ 2 3: ; d Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 14 / 47

  16. Robustness? Theorem (Javanmard, Montanari ’11) ♣ d ✭ log n ❂ n ✮ 1 ❂ d . Then, w.h.p., Assume r ✕ 10 X ✮ ✔ C 1 ✭ nr d ✮ 5 ✁ d ✭ X ❀ ❫ r 4 ❀ Further, there exists a set of ‘adversarial’ measurements such that ✁ d ✭ X ❀ ❫ X ✮ ✕ C 2 r 4 ✿ n ❳ X ✮ ✙ 1 d ✭ X ❀ ❫ ❦ x i � ❜ x i ❦ n i ❂ 1 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 15 / 47

  17. Robustness? Theorem (Javanmard, Montanari ’11) ♣ d ✭ log n ❂ n ✮ 1 ❂ d . Then, w.h.p., Assume r ✕ 10 X ✮ ✔ C 1 ✭ nr d ✮ 5 ✁ d ✭ X ❀ ❫ r 4 ❀ Further, there exists a set of ‘adversarial’ measurements such that ✁ d ✭ X ❀ ❫ X ✮ ✕ C 2 r 4 ✿ n ❳ X ✮ ✙ 1 d ✭ X ❀ ❫ ❦ x i � ❜ x i ❦ n i ❂ 1 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 15 / 47

  18. Lower bound Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 16 / 47

  19. Proof: Lower bound Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 17 / 47

  20. Proof: Lower bound (first attempt) 0.5
 0
 ‐0.5
 ‐0.5
 0
 0.5
 q ✁ Scale the coordinates by a ❂ r 2 ✰ 1 X ✮ ✕ ✁ d ✭ X ❀ ❫ r 2 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 18 / 47

  21. Proof: Lower bound ❚ ✿ ❬ � 0 ✿ 5 ❀ 0 ✿ 5 ❪ d ✦ R d ✰ 1 R ❂ r 2 ❚ ✭ t 1 ❀ t 2 ❀ ✁ ✁ ✁ ❀ t d ✮ ❂ ✭ R sin t 1 R ❀ t 2 ❀ ✁ ✁ ✁ ❀ t d ❀ R ✭ 1 � cos t 1 R ✮✮ ❀ ♣ ✁ Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 19 / 47

  22. Rigidity theory and upper bound Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 20 / 47

  23. Uniqueness ✱ Global rigidity Global rigidity Assume noiseless measurements. Is the reconstruction unique? (up to rigid motions) Depends both on G and on ✭ x 1 ❀ ✿ ✿ ✿ ❀ x n ✮ Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 21 / 47

  24. Global rigidity: Characterization Theorem (Connelly 1995; Gortler, Healy, Thurston, 2007) ✭ G ❀ ❢ x i ❣ ✮ is globally rigid in R d ✱ ✭ G ❀ ❢ x i ❣ ✮ admits a stress matrix ✡ , with rank ✭✡✮ ❂ n � d � 1 . Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 22 / 47

  25. Stress matrix Definition ✡ ✷ R n ✂ n is a stress matrix if supp ✭✡✮ ✒ E and ✡ u ❂ ✡ x ✭ 1 ✮ ❂ ✿ ✿ ✿ ✡ x ✭ d ✮ ❂ 0 ✿ u ❂ ✭ 1 ❀ ✿ ✿ ✿ ❀ 1 ✮ ✷ R n x ✭ ❵ ✮ ✷ R n vector of positions’ ❵ -th coordinate rank ✭✡✮ ✔ n � d � 1 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 23 / 47

  26. Stress matrix: Some intuition ✿ ✿ ✿ imagine putting springs on the edges ✿ ✿ ✿ ✦ ij Equilibrium x 1 ❀ ✿ ✿ ✿ ❀ x n : ❳ [force on i ] ❂ ✦ ij ✭ x j � x i ✮ ❂ 0 j ✷ ❅ i ✡ ij ❂ ✦ ij , ✡ ii ❂ � P j ✷ ❅ i ✦ ij Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 24 / 47

  27. Stress matrix: Some intuition ✿ ✿ ✿ imagine putting springs on the edges ✿ ✿ ✿ ✦ ij Equilibrium x 1 ❀ ✿ ✿ ✿ ❀ x n : ❳ [force on i ] ❂ ✦ ij ✭ x j � x i ✮ ❂ 0 j ✷ ❅ i ✡ ij ❂ ✦ ij , ✡ ii ❂ � P j ✷ ❅ i ✦ ij Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 24 / 47

  28. Infinitesimal rigidity Consider a continuos motion preserving distances instantaneously ✭ x i � x j ✮ T ✭ ❴ x i � ❴ x j ✮ ❂ 0 ❀ ✽ ✭ i ❀ j ✮ ✷ E Trivial motions A ❂ � A T ✷ R d ✂ d x i ❂ Ax i ✰ b ❀ ❴ ✡ ✣ ❏ ❪ ✡ ❏ rotation translation Definition ✭ G ❀ ❢ x i ❣ ✮ is infinitesimally rigid if rotations and translations are the only infinitesimal motions. Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 25 / 47

  29. Infinitesimal rigidity Consider a continuos motion preserving distances instantaneously ✭ x i � x j ✮ T ✭ ❴ x i � ❴ x j ✮ ❂ 0 ❀ ✽ ✭ i ❀ j ✮ ✷ E Trivial motions A ❂ � A T ✷ R d ✂ d x i ❂ Ax i ✰ b ❀ ❴ ✡✡ ✣ ❪ ❏ ❏ rotation translation Definition ✭ G ❀ ❢ x i ❣ ✮ is infinitesimally rigid if rotations and translations are the only infinitesimal motions. Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 25 / 47

  30. Rigidity matrix ✭ x i � x j ✮ T ✭ ❴ x i � ❴ x j ✮ ❂ 0 ❀ ✽ ✭ i ❀ j ✮ ✷ E ✷ ✸ ❴ x 1 ✻ . ✼ . R G ❀ X ✁ ✺ ❂ 0 ✹ . ❴ x n Definition R G ❀ X ✷ R ❥ E ❥✂ nd is the rigidity matrix of framework ✭ G ❀ ❢ x i ❣ ✮ . ✥ ✦ dim ✭ null ✭ R G ❀ X ✮✮ ✕ d ✭ d � 1 ✮ d ✰ 1 ✰ d ❂ ⑤④③⑥ 2 2 ⑤ ④③ ⑥ b A � d ✰ 1 ✁ . ✭ G ❀ ❢ x i ❣ ✮ is infinitesimally rigid if rank ✭ R G ❀ X ✮ ❂ nd � 2 Javanmard, Montanari (Stanford) Localization Problem August 3, 2011 26 / 47

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend