line search via interpolation and sdp
play

Line search via interpolation and SDP Etienne de Klerk , Gamal - PowerPoint PPT Presentation

Line search via interpolation and SDP Etienne de Klerk , Gamal Elabwabi, Dick den Hertog Tilburg University Workshop Advances in Continuous Optimization, Iceland, June, 2006 Line search via interpolation and SDP p. 1/21 Outline


  1. Line search via interpolation and SDP Etienne de Klerk † , Gamal Elabwabi, Dick den Hertog † Tilburg University Workshop Advances in Continuous Optimization, Iceland, June, 2006 Line search via interpolation and SDP – p. 1/21

  2. Outline Lagrange interpolation – an overview; Minimizing Lagrange interpolants using SDP; Extracting minimizers; Numerical results; Discussion. Line search via interpolation and SDP – p. 2/21

  3. Basic idea Line search problem for given f : [ − 1 , 1] → I R: x ∈ [ − 1 , 1] f ( x ) min Approximate f by its Lagrange interpolant using the Chebyshev nodes of the first kind; Minimize the interpolant using semidefinite programming (SDP); Extract global minimizers of the interpolant. Line search via interpolation and SDP – p. 3/21

  4. Lagrange interpolation The Lagrange interpolating polynomial of degree n of a function f : [ − 1 , 1] → I R, say L n ( f ) with respect to given nodes x i ∈ [ − 1 , 1] ( i = 0 , . . . , n ) , is the unique polynomial given by: n � L n ( f )( x ) := f ( x i ) l n,i ( x ) , i =0 where x − x j � l n,i ( x ) := x i − x j j � = i is called the fundamental Lagrange polynomial . NB: l n,i ( x j ) = δ ij . Line search via interpolation and SDP – p. 4/21

  5. Remainder formula Suppose that f ∈ C n +1 [ − 1 , 1] and let L n ( f ) be given as before. Then for any x ∈ [ − 1 , 1] , one has n ( x − x i ) f ( n +1) ( ζ ( x )) � f ( x ) − L n ( f )( x ) = for some ζ ( x ) ∈ [ − 1 , 1] ( n + 1)! i =0 � f ( n +1) � ∞ , [ − 1 , 1] ≤ , 2 n ( n + 1)! if � (2 i + 1) π � x i = cos i = 0 , . . . , n, 2( n + 1) i.e. x i ’s ≡ Chebyshev nodes of the first kind . Line search via interpolation and SDP – p. 5/21

  6. Interpolation error for analytic f If f is analytic on and inside an ellipse E in the complex plane with foci ± 1 and axis lengths 2 L and 2 l , then � � ( l + L ) − n � f − L n ( f ) � ∞ , [ − 1 , 1] ≤ max z ∈E | f ( z ) | 1 Example: if f ( x ) = 1+ x 2 then the poles ± i determine that l = 1 √ √ 2) − n ) . and therefore L = 2 . Convergence rate: O ((1 + If f is analytic (holomorphic) on all of C , then even faster � for all c > 0 . � 1 convergence: o c n Line search via interpolation and SDP – p. 6/21

  7. Summary: convergence rates � f − L n ( f ) � ∞ , [ − 1 , 1] type f � � log n f ∈ C r [ − 1 , 1] O n r � � 1 f analytic on E ⊇ [ − 1 , 1] O ( l + L ) n � 1 � ∀ c > 0 f holomorphic on C o c n Consequently, one has x ∈ [ − 1 , 1] L n ( f ) → f ≡ min x ∈ [ − 1 , 1] f as n → ∞ min with the same rates of convergence as in the table. Line search via interpolation and SDP – p. 7/21

  8. Minimizing an interpolant via SDP Let (an interpolant) p ∈ I R [ x ] (real univariate polynomial) be given. := x ∈ [ − 1 , 1] p ( x ) min p = max { τ : p ( x ) − τ ≥ 0 , ∀ x ∈ [ a, b ] } . Idea by Nesterov: rewrite the nonnegativity condition as a LMI using an old theorem by Lucács. Yu. Nesterov, Squared functional systems and optimization problems. In H. Frenk, K. Roos, T. Terlaky and S. Zhang (eds.), High Performance Optimization . Dordrecht, Kluwer Academic Press, 405–440, 2000. Line search via interpolation and SDP – p. 8/21

  9. Lucács theorem Let p be of degree 2 m . Then p is nonnegative on an interval [ a, b ] iff: p ( x ) = q 2 1 ( x ) + ( x − a )( b − x ) q 2 2 ( x ) , for some polynomials q 1 of degree m and q 2 of degree m − 1 . Moreover, if the degree of p is 2 m + 1 then p is nonnegative on [ a, b ] if and only if it has the following representation: p ( x ) = ( x − a ) q 2 1 ( x ) + ( b − x ) q 2 2 ( x ) , for some polynomials q 1 and q 2 of degree m . Line search via interpolation and SDP – p. 9/21

  10. Gram matrix representation If q is sum-of-squares polynomial of degree 2 m , then q ( x ) = B m ( x ) T XB m ( x ) for some matrix X � 0 of order m + 1 , where B m is a basis for polynomials of degree ≤ m , like B m ( x ) T = [1 x x 2 . . . x m ] . For stable computation we use instead the Chebyshev basis : B m ( x ) T = [ T 0 ( x ) T 1 ( x ) T 2 ( x ) . . . T m ( x )] , where T j ( x ) := cos( j arccos x ) ( j = 0 , 1 , . . . ) are the Chebyshev polynomials . Line search via interpolation and SDP – p. 10/21

  11. Sampling approach Assume degree ( p ) = 2 m . Using the Gram matrix representation and the Lucács theorem, the condition p ( x ) − τ ≥ 0 , ∀ x ∈ [ a, b ] can now be reformulated as: p ( x ) − τ = q 1 ( x ) + ( x − a )( b − x ) q 2 ( x ) , q 1 , q 2 are sums-of-squares B m ( x ) T X 1 B m ( x ) + ( x − a )( b − x ) B m − 1 ( x ) T X 2 B m − 1 ( x ) , = where X 1 , X 2 are positive semidefinite matrices. We rewrite this as an SDP using the ‘sampling’ approach by Löfberg-Parrilo. Basic idea: two univariate polynomials of degree at most 2 m are identical iff their function values coincide at 2 m distinct points. Line search via interpolation and SDP – p. 11/21

  12. Sampling approach (ctd.) We had p ( x ) − τ = B m ( x ) T X 1 B m ( x )+( x − a )( b − x ) B m − 1 ( x ) T X 2 B m − 1 ( x ) . Since degree ( p ) = 2 m this is the same as requiring p ( x i ) − τ = B m ( x i ) T X 1 B m ( x i )+( x i − a )( b − x i ) B m − 1 ( x i ) T X 2 B m − 1 ( x i ) for each interpolation node x i ( i = 0 , . . . , 2 m ) . J. Löfberg and P. Parrilo, From coefficients to samples: a new approach to SOS optimization, IEEE Conference on Decision and Control , December 2004. Line search via interpolation and SDP – p. 12/21

  13. Final SDP formulation Since p interpolates f at the x i ’s, i.e. p ( x ) = L 2 m ( f )( x ) , we may replace p ( x i ) by f ( x i ) . x ∈ [ a,b ] L 2 m ( f )( x ) = max min τ,X 1 ,X 2 τ subject to f ( x i ) − τ = B m ( x i ) T X 1 B m ( x i )+( x i − a )( b − x i ) B m − 1 ( x i ) T X 2 B m − 1 ( x i ) , for ( i = 0 , . . . , 2 m ) , where X 1 � 0 , X 2 � 0 , the x i ’s are the Chebychev nodes, and B m the Chebychev basis. Line search via interpolation and SDP – p. 13/21

  14. Advantages of the SDP formulation We do not have to compute the coefficients of the Lagrange interpolant; The constraints of the SDP problems involve only rank one matrices , and this is exploited by the SDP solver DSDP; Extracting a global minimizer of the interpolant using the method by Lasserre-Henrion and Laurent-Jibetean only involves an eigenvalue problem of order the number of global minimizers of the interpolant (very small in practice); D. Henrion and J.B. Lasserre. Detecting global optimality and extracting solutions in GloptiPoly. In D. Henrion, A. Garulli (eds), Positive Polynomials in Control, LNCIS, 312 , Springer Verlag, 2005. D. Jibetean and M. Laurent. Semidefinite approximations for global unconstrained polynomial optimization. SIOPT , 16 (2), 490–514, 2005. Line search via interpolation and SDP – p. 14/21

  15. P 5 Test functions Function f [ a, b ] max x ∈ [ a,b ] f ( x ) Global maximizer(s) 6 x 6 + 52 25 x 5 − 39 − 1 80 x 4 1 [-1.5,11] 29,763.233 10 10 x 3 + 79 20 x 2 + x − − 71 1 10 − sin x − sin 10 3 x 2 [2.7,7.5] 1.899599 5.145735 -6.7745761 P 5 k =1 k sin(( k + 1) x + k ) 3 [-10,10] 12.03124 -0.491391 5.791785 (16 x 2 − 24 x + 5) e − x 4 [1.9,3.9] 3.85045 2.868034 ( − 3 x + 1 . 4) sin 18 x 5 [0,1.2] 1.48907 0.96609 ( x + sin x ) e − x 2 6 [-10,10] 0.824239 0.67956 − sin x − sin 10 3 x 7 [2.7,7.5] 1.6013 5.19978 − ln x + 0 . 84 x − 3 - 7.083506 k =1 k cos(( k + 1) x + k ) 8 [-10,10] 14.508 -0.800321 5.48286 Line search via interpolation and SDP – p. 15/21

  16. Test functions (ctd.) Function f [ a, b ] max x ∈ [ a,b ] f ( x ) Global maximizer(s) − sin x − sin 2 3 x 9 [3.1,20.4] 1.90596 17.039 x sin x 10 [0,10] 7.91673 7.9787 2.09439 8 2 cos x + cos 2 x 11 [-1.57,6.28] 1.5 4.18879 < π : − sin 3 x − cos 3 x 12 [0,6.28] 1 4.712389 √ x 2 / 3 + (1 − x 2 ) 1 / 3 1 / 2 13 [0.001,0.99] 1.5874 e − x sin 2 πx 14 [0,4] 0.788685 0.224885 ( − x 2 + 5 x − 6) / ( x 2 + 1) 15 [-5,5] 0.03553 2.41422 − 2( x − 3) 2 − e − x 2 / 2 16 [-3,3] -0.0111090 3 -3 − x 6 + 15 x 4 − 27 x 2 − 250 17 [-4,4] -7 3 − ( x − 2) 2 , x ≤ 3 ; 18 [0,6] 0 2 − 2 ln( x − 2) − 1 , otherwise. Line search via interpolation and SDP – p. 16/21

  17. Test functions (ctd.) Function f [ a, b ] max x ∈ [ a,b ] f ( x ) Global maximizer(s) sin 3 x − x − 1 19 [0,6.5] 7.81567 5.87287 ( x − sin x ) e − x 2 20 [-10,10] 0.0634905 1.195137 Posed as maximization problems. P. Hansen, B. Jaumard, and S-H. Lu. Global optimization of univariate Lipschitz functions : II. New algorithms and computational comparisons. Mathematical Programming , 55 , 273-292, 1992. Line search via interpolation and SDP – p. 17/21

  18. Relative errors For the 20 test functions, we used DSDP to compute the relative errors: | ¯ f − ¯ L n ( f ) | 1 + | ¯ f | in the table below, where ¯ f := max x ∈ [ a,b ] f ( x ) , etc. Number of Chebyshev nodes: n = 20 , 30 , . . . , 90 . f \ n 20 30 40 50 60 70 80 90 1 4.18e-9 2.29e-10 5.30e-9 7.45e-9 5.79e-9 2.44e-9 1.02e-8 1.04e-8 2 1.01e-7 1.06e-7 1.18e-7 1.16e-7 1.18e-7 1.18e-7 1.18e-7 1.19e-7 3 1.29e-2 7.50e-2 4.76e-2 5.52e-2 1.53e-2 8.50e-5 3.15e-8 4.94e-8 4 1.40e-7 1.34e-7 1.40e-7 1.39e-7 1.43e-7 1.43e-7 1.35e-7 1.43e-7 5 2.80e-5 5.38e-8 1.01e-6 1.01e-6 1.01e-6 1.01e-6 1.01e-6 1.01e-6 6 2.98e-1 7.54e-2 5.70e-3 1.01e-3 2.15e-4 1.45e-5 6.04e-7 2.16e-7 Line search via interpolation and SDP – p. 18/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend