lehrstuhl f r theoretische informationstechnik lehr und
play

Lehrstuhl fr Theoretische Informationstechnik Lehr- und - PowerPoint PPT Presentation

Lehrstuhl fr Theoretische Informationstechnik Lehr- und Forschungseinheit 1 fr Nachrichtentechnik Let H and be finite-dimensional complex Hilbert spaces. We consider the channels W: A S(H) V: A S ( ) (W,V) is


  1. Lehrstuhl für Theoretische Informationstechnik Lehr- und Forschungseinheit 1 für Nachrichtentechnik

  2. Let H and 𝐼 � be finite-dimensional complex Hilbert spaces. We consider the channels W: A → S(H) V: A → S ( 𝐼 � ) (W,V) is called a classical-quantum wiretap channel  W represents the communication link to the legitimate receiver  V‘s output is under control of the wiretapper 2

  3. 3

  4. 4

  5. 5

  6. 6

  7. For classical-quantum channel V, probability distribution P, and quantum states σ and ρ such that supp (ρ) ⊂ supp (σ) S ( σ ) ≔ -tr( σ log σ ) χ (P;V) ≔ 𝑇 ∑ − ∑ 𝑄 𝑦 𝑊 𝑦 𝑄 𝑦 𝑇 𝑊 𝑦 �∈� �∈� D ( σ‖ρ ) ≔ tr ( σ log σ − log ρ ) D � ( σ‖ρ ) ≔ log tr( σ � ρ �� ) 7

  8. The strong secrecy capacity of (W,V) is equal to the maximum is taken over finite input sets M, input probability distributions P on M, and classical channels E : M → P( 𝑌 � ). 8

  9. The semantic secrecy capacity of (W,V) is equal to its strong secrecy capacity 9

  10. 10

  11. This is only an existence statement How to choose the semantically secure message subsets 11

  12. messages �� �� seeds �� �� Idea: biregular irreducible functions (BRI functions) Similar to universal hash functions for strong secrecy The channel users share a random seed 12

  13. Let S, X, N be finite sets. A function f : S × X → N is called X biregular irreducible (BRI) if there exists a subset M of N such that for every m ∈ M we have S 𝑒 � = 4 , 𝑒 � = 4 13

  14. The modular BRI scheme : ��� (m) (E,D) is a transmission code for W and f is a BRI function. 𝑔 denotes the random choice of a preimage of f given seed s and message m. 14

  15. ϵ-subnormalized classical-quantum channel V ′ : For all x V ′(x) ≥ 0 1 − ϵ ≤ tr V ′(x) ≤ 1, 15

  16. For ϵ-subnormalized V’≤ V and random variable M independent of S , it holds where λ � (f,m) is the second largest singular value of 𝑄 �,� 16

  17. � Define V( X ) := . For M independent of S |�| ∑ V(𝑦) � For ϵ-subnormalized V’≤ V and fixed m For ϵ-subnormalized V’≤ V and fixed m 17

  18. For ϵ-subnormalized V’ and fixed m 18

  19. For any probability distribution P over X, there exist BRI modular codes achieving the semantic secrecy rate χ(P;W) − χ (P;V) using transmission codes achieving the transmission rate χ(P;W). 19

  20. transmission codes achieving the transmission rate χ (P;W) with P-typical codewords 𝑦 � , there is a V′ such that rank[V′(𝑌 � )] max � � ∈ � � V′(𝑦 � ) � ≤ 2n(χ(P,V)+δ) Choose |S| ≥ 2−n(χ(P,V)+ α ), |M| ≤ 2−n(χ (P;W) − χ(P,V)+ β ) λ � (f,m) ≤ 2−n(χ(P,V)+2δ) 20

  21. The semantic secrecy capacity of (W,V) is equal to its strong secrecy capacity, and can be achieved using transmission codes for W 21

  22. public code BRI modular code seed message [01100...|110100110000101100111......] 22

  23. 23

  24. 24

  25. Beware of eavesdropper #StaySafe

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend