lecture 4 adaptive construction of pgd reduced order
play

Lecture 4: Adaptive Construction of PGD reduced-order models with - PowerPoint PPT Presentation

Lecture 4: Adaptive Construction of PGD reduced-order models with respect to Quantities of Interest Serge Prudhomme D epartement de math ematiques et de g enie industriel Polytechnique Montr eal DCSE Fall School 2019 TU Delft, The


  1. Lecture 4: Adaptive Construction of PGD reduced-order models with respect to Quantities of Interest Serge Prudhomme D´ epartement de math´ ematiques et de g´ enie industriel Polytechnique Montr´ eal DCSE Fall School 2019 TU Delft, The Netherlands, November 4-8, 2019 S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 1 / 16

  2. Motivation Motivation: EIT problem for composite materials S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 2 / 16

  3. Outline Outline Introduction PGD Approximations Goal-oriented formulation for PGD Approximations Perspectives and Conclusions S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 3 / 16

  4. Model order reduction Reduced-order models/Surrogate models Model order reduction (MOR) is a technique for reducing the computational complexity of mathematical models in numerical simulations: ∞ N � � u ( t, x ) = ψ i ( t ) φ i ( x ) ≈ ψ i ( t ) φ i ( x ) = u N ( x, t ) i =1 i =1 Proper Orthogonal Decomposition methods (PCA, etc.) Reduced-basis methods: Peraire, Patera, Maday, Rozza, etc. Proper Generalized Decomposition methods (low-rank approx.): Ladev` eze, Nouy, Chinesta, Mattis, Le Maˆ ıtre, etc. F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations, Springer International Publishing, 2014. S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 4 / 16

  5. PGD Approximations Proper Generalized Decomposition method (PGD) Model problem: Find u ∈ V such that B ( u, v ) = F ( v ) , ∀ v ∈ V with B ( u, v ) symmetric and positive-definite bilinear form. � 1 � u = argmin J ( v ) = argmin 2 B ( v, v ) − F ( v ) v ∈ V v ∈ V Separated representation: Find an approximation u m of u in the form m � u ( x, θ ) ≈ u m ( x, θ ) = ψ i ( x ) φ i ( θ ) , ∀ ( x, θ ) ∈ D × Ω i =1 S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 5 / 16

  6. Goal-oriented PGD formulation Proper Generalized Decomposition method (PGD) Progressive (iterative) approach: Given u m − 1 , find next mode ψφ such that u m is a better approximation to u : u m ( x, θ ) = u m − 1 ( x, θ ) + ψ ( x ) φ ( θ ) Optimization problem: u m = argmin J ( u m − 1 + ψφ ) ψφ J ( u m − 1 + ψφ + ǫδ ( ψφ )) − J ( u m − 1 + ψφ ) J ′ ( u m − 1 + ψφ ; δ ( ψφ )) = lim ǫ ǫ → 0 = B ( u m − 1 + ψφ, δ ( ψφ )) − F ( δ ( ψφ )) � � = B ( ψφ, δ ( ψφ )) − F ( δ ( ψφ )) − B ( u m − 1 , δ ( ψφ )) � �� � R ( δ ( ψφ )) S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 6 / 16

  7. Goal-oriented PGD formulation Proper Generalized Decomposition method (PGD) Note that the variation δ ( ψφ ) is given by δ ( ψφ ) = ψ ( δφ ) + ( δψ ) φ := ψφ ∗ + ψ ∗ φ Nonlinear weak form for PGD: B ( ψφ, ψφ ∗ + ψ ∗ φ ) = R ( ψφ ∗ + ψ ∗ φ ) , ∀ ψ ∗ , ∀ φ ∗ or ∀ ψ ∗ = ψ ∗ ( x ) B ( ψφ, ψ ∗ φ ) = R ( ψ ∗ φ ) , ∀ φ ∗ = φ ∗ ( θ ) B ( ψφ, ψφ ∗ ) = R ( ψφ ∗ ) , Use Alternated Directions scheme: φ (0) → ψ (1) → φ (1) → ψ (2) → φ (2) . . . S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 7 / 16

  8. Goal-oriented PGD formulation PGD method with constraint Nonlinear mixed-weak PGD formulation: B ( ψφ, ψ ∗ φ ) + λ · Q ( ψ ∗ φ ) = R ( ψ ∗ φ ) , ∀ ψ ∗ B ( ψφ, ψφ ∗ ) + λ · Q ( ψφ ∗ ) = R ( ψφ ∗ ) , ∀ φ ∗ ∀ µ ∈ R k µ · Q ( ψφ ) = µ · ( Q ( u ) − Q ( u m − 1 )) , Issue: Separation of variables decouples the dimensions of the problem while constraints should be applied globally. Iterative approach ( Uzawa or Augmented Lagrangian ): Given λ i − 1 , solve for ψ i and φ i using Alternated directions. Update the Lagrange multiplier λ i . Repeat until convergence. Kergrene, Prudhomme, Chamoin, and Laforest, “Approximation of constrained problems using the PGD method with application to pure Neumann problems”, CMAME, 2017. S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 8 / 16

  9. Goal-oriented PGD formulation Example: Bar model � E 1 , x ∈ (0 , L/ 2) , N 1 ( x ) N 2 ( x ) E ( x ) = E 2 , x ∈ ( L/ 2 , L ) , � � 1 E 1 E 2 F = 1 Q 1 ( u ) = u ( L/ 2) , | D | D 1 D 2 x = 0 x = L/ 2 x = L � � 1 Q 2 ( u ) = u ( L ) , | D | D 1 D 2 L L u ( x, E 1 , E 2 ) = ( N 1 ( x ) + N 2 ( x )) + N 2 ( x ) , 2 E 1 2 E 2 m � u m ( x, E 1 , E 2 ) = ϕ i ( x ) φ 1 i ( E 1 ) φ 2 i ( E 2 ) i =1 S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 9 / 16

  10. Goal-oriented PGD formulation Example: Bar model 3 0.65 0.6 Classical 0.6 Penalization β = 10 2 0.55 2.5 0.55 Penalization β = 10 5 0.5 0.5 Uzawa 2 0.45 0.45 φ 1 φ 2 ϕ 1.5 0.4 0.4 0.35 0.35 1 0.3 0.3 0.25 0.5 0.25 0.2 0 0.15 0.2 0 0.5 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 E 1 E 2 x 0.6 0.6 1.4 0.4 1.2 0.4 0.2 1 0.2 0 0.8 φ 1 -0.2 φ 2 ϕ 0 0.6 -0.4 0.4 -0.2 -0.6 0.2 -0.8 -0.4 0 -1 -0.6 -1.2 -0.2 0 0.5 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 E 1 E 2 x 0.7 1.5 0.6 0.4 0.6 1 0.2 0.5 0.5 0 0.4 -0.2 0 0.3 φ 1 φ 2 ϕ -0.4 0.2 -0.5 -0.6 0.1 -0.8 -1 0 -1 -1.5 -0.1 -1.2 -0.2 -2 -1.4 0 0.5 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x E 1 E 2 First three PGD: ϕ ( x ) (left), φ 1 ( E 1 ) , φ 2 ( E 2 ) . S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 10 / 16

  11. Goal-oriented PGD formulation EIT Example Quantities of interest: � 1 1 1 � � � � Q 1 ( u ) = u − u | D | | Γ 2 | | Γ 3 | D Γ 2 Γ 3 � 1 Γ 1 Γ 2 Γ 3 Γ 4 1 1 � � � � Q 2 ( u ) = u − u σ = 1 | D | | Γ 2 | | Γ 5 | D Γ 2 Γ 5 � 1 1 1 � � � � Q 3 ( u ) = u − u σ = σ b | D | | Γ 2 | | Γ 6 | D Γ 2 Γ 6 σ = 1 where D = D a × D b with: σ = σ a σ a ∈ D a = [1 , 10] σ b ∈ D b = [0 . 1 , 1] σ = 1 Γ 5 Γ 6 Separation of variables: m � u m ( x, y, σ a , σ b ) = f i ( x, y ) g i ( σ a ) h i ( σ b ) i =1 S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 11 / 16

  12. Goal-oriented PGD formulation EIT Example 10 -1 0.22 Classical PGD Classical PGD Goal-Oriented PGD Goal-Oriented PGD 0.21 10 -2 0.2 0.19 ǫ 1 ǫ 10 -3 0.18 0.17 10 -4 0.16 0.15 10 -5 0.14 0 10 20 30 40 50 60 0 10 20 30 40 50 60 m m (a) Error in the energy norm, (b) Error in Q 1 , with respect to # of modes S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 12 / 16

  13. Goal-oriented PGD formulation EIT Example 10 -1 10 -1 Classical PGD Classical PGD Goal-Oriented PGD Goal-Oriented PGD 10 -2 10 -2 ǫ 3 ǫ 2 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 0 10 20 30 40 50 60 0 10 20 30 40 50 60 m m (c) Error in Q 2 , (d) Error in Q 3 , with respect to # of modes S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 13 / 16

  14. Goal-oriented PGD formulation EIT Example Model Problem: Γ 1 Γ 2 Γ 3 Γ 4 σ = 1 −∇ · ( σ ∇ u ) = 0 , in Ω , σ = σ b n · σ ∇ u = g, on ∂ Ω . σ = 1 This is a 5D problem: σ = σ a 2 space variables ( x, y ) σ = 1 Diffusivities σ a and σ b Γ 5 Γ 6 Position x 1 of electrode Γ 1 Input/Output: Load g corresponds to the difference of potential between Γ 1 and Γ 4 . QoI’s are 3 differences of potential between other pairs of electrodes. S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 14 / 16

  15. Goal-oriented PGD formulation Adapted meshes and error convergence From top to bottom: 2d mesh in x and y , 1d meshes in σ a and σ b , 1d mesh in x 1 S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 15 / 16

  16. Conclusions Concluding Remarks Reformulation of the problem to directly take into account QoI’s. Extension to multiple QoI’s (Multi-objective optimization). Extension to other ROM methods to optimize modes wrt QoI’s. Adaptivity both in number of modes m and in mesh size h . Further research work: Extension to non-linear problems and quantities of interest. Development of robust error estimators S. Prudhomme (Polytechnique Montr´ eal) PGD reduced-order models November 4-8, 2019 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend