lecture 2 convex set
play

Lecture 2 Convex Set CK Cheng Dept. of Computer Science and - PowerPoint PPT Presentation

CSE203B Convex Optimization Lecture 2 Convex Set CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1 Convex Optimization Problem: min 0 Subject to , = 1,


  1. CSE203B Convex Optimization Lecture 2 Convex Set CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1

  2. Convex Optimization Problem: min 𝑦 𝑔 0 𝑦 Subject to 𝑔 𝑗 𝑦 ≀ 𝑐 𝑗 , 𝑗 = 1, β‹― , 𝑛 1. 𝑔 0 𝑦 is a convex function 2. For 𝑔 𝑗 𝑦 ≀ 𝑐 𝑗 , 𝑗 = 1, … , 𝑛 𝑦|𝑔 𝑗 (𝑦) ≀ 𝑐 𝑗 , 𝑗 = 1, β‹― , 𝑛 is a convex set 2

  3. Convex Optimization Problem: A. Convex Function Definition: 𝑔 𝑗 𝛽𝑦 + 𝛾𝑧 ≀ 𝛽𝑔 𝑗 𝑦 + 𝛾𝑔 𝑗 𝑧 , βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0 B. Convex Set Definition: βˆ€π‘¦, 𝑧 ∈ 𝐷 We have 𝛽𝑦 + 𝛾𝑧 ∈ 𝐷, βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0 3

  4. Chapter 2 Convex Set 1. Set Convexity and Specification 1. Convexity 2. Implicit vs. Explicit Enumeration 2. Convex Set Terms and Definitions 3. Separating Hyperplanes 4. Dual Cones 4

  5. 1. Set Convexity and Specification: Convexity A set 𝑇 is convex if we have 𝛽𝑦 + 𝛾𝑧 ∈ 𝑇, βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0, βˆ€π‘¦, 𝑧 ∈ 𝑇 Examples: 5

  6. 1. Set Convexity and Specification: Convexity A set 𝑇 is convex if we have 𝛽𝑦 + 𝛾𝑧 ∈ 𝑇, βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0, βˆ€π‘¦, 𝑧 ∈ 𝑇 Remark: 1. Most used sets in the class 1. Scalar set: 𝑇 βŠ‚ 𝑆 2. Vector set: 𝑇 βŠ‚ 𝑆 π‘œ 3. Matrix set: 𝑇 βŠ‚ 𝑆 π‘œΓ—π‘› 2. Set S is convex if every two points in S has the connected straight segment in the set. 3. For convex sets 𝑇 1 and 𝑇 2 : 𝑇 1 ∩ 𝑇 2 is also convex 6

  7. 1. Set Convexity and Specification: Set Specification via Implicit or Explicit Enumeration 𝑇 𝐽 = {𝑦|𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } Implicit Expression Explicit Enumeration 𝑇 𝐹 = {𝐡𝑦 | 𝑦 ∈ 𝑆 π‘œ } Implicit Expression: Explicit Expression: Constraints Enumeration 𝑝 𝐡𝑦 , 𝑦 ∈ 𝑆 π‘œ Min 𝑔 𝑝 𝑦 Min 𝑔 Subject to 𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ 7

  8. 1. Implicit vs Explicit Enumeration of Convex Set Implicit Expression 𝑇 1 = {𝑦|𝐡𝑦 ≀ 𝑐} Example: { 𝑦 | 𝐡𝑦 ≀ 𝑐 } 𝑦 1 +2𝑦 2 +3𝑦 3 ≀ 4 Remark: Simultaneous linear 2𝑦 1 βˆ’π‘¦ 2 ≀ 3 constraints imply AND, 𝑦 2 +𝑦 3 ≀ 5 Intersection of the constraints 𝑦 3 ≀ 10 1 2 3 4 𝑦 1 2 βˆ’1 0 3 𝑦 2 𝐡 = , 𝑦 = , 𝑐 = 0 1 1 5 𝑦 3 0 0 1 10 8

  9. 1. Implicit vs Explicit Enumeration of Convex Set 𝑇 1 = {𝑦|𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } is a convex set Proof: Given two vectors 𝑣, 𝑀 ∈ 𝑇 1 , 𝑗. 𝑓. 𝐡𝑣 ≀ 𝑐 , 𝐡𝑀 ≀ 𝑐 For π‘₯ = πœ„ 1 𝑣 + πœ„ 2 𝑀, βˆ€πœ„ 1 + πœ„ 2 = 1, πœ„ 1 , πœ„ 2 β‰₯ 0 we have 𝐡π‘₯ ≀ 𝑐. ( 𝐡π‘₯ = πœ„ 1 𝐡𝑣 + πœ„ 2 𝐡𝑀 ≀ πœ„ 1 𝑐 + πœ„ 2 𝑐 = 𝑐) The inequality implies π‘₯ ∈ 𝑇 1 By definition, set 𝑇 1 is convex. Remark: 1. Simultaneous linear constraints imply AND, Intersection of the constraints 2. Linear constraints constitute a convex set. 9

  10. 1. Specification of Convex Set: Implicit Expression Example: π‘ž 𝑦 (𝑒) ≀ 1 for 𝑒 ≀ 𝜌 𝑇 = 𝑦 ∈ 𝑆 𝑛 3 } π‘₯β„Žπ‘“π‘ π‘“ π‘ž 𝑦 𝑒 = 𝑦 1 cos 𝑒 + 𝑦 2 cos 2𝑒 + β‹― + 𝑦 𝑛 cos 𝑛𝑒 10

  11. 1. Implicit vs Explicit Enumeration of Convex Set Example: 𝑇 2 = 𝑦 𝐡𝑦 β‰₯ 𝑐, 𝑦 ∈ 𝑆 π‘œ } 𝑇 3 = 𝑦 𝐡𝑦 = 𝑐, 𝑦 ∈ 𝑆 π‘œ } 11

  12. 1. Specification of Set: Explicit Expression Explicit Enumeration 𝑦 𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } 𝑀𝑑. 𝐡𝑦 𝑦 ∈ 𝑆 π‘œ } Example: 2 1 1 𝑐 = 𝐡 = 1 1 0 1 0 βˆ’1 12

  13. 1. Specification of Set: Explicit Expression Implicit and Explicit Conversion Example: x 𝐡𝑦 ≀ 𝑐, 𝑦 ∈ 𝑆 π‘œ } 𝑀𝑑 {π‘‰πœ„| 1 π‘ˆ πœ„ = 1, πœ„ ∈ 𝑆 + 𝑛 } πœ„ 1 1 1 2 πœ„ 2 1 1 βˆ’1 βˆ’1 𝑦 1 1 0 1 𝑦 2 ≀ πœ„ 3 1 βˆ’1 βˆ’1 3 βˆ’1 0 1 πœ„ 4 0 βˆ’1 1 13

  14. 1. Implicit vs Explicit Enumeration of Convex Set Remark: Implicit Expression: Constraints of the problem formulation Explicit Enumeration: Formulation of the objective function The interchange may not be trivial. min 𝑔 0 (π‘‰πœ„) min 𝑔 0 (𝑦) 𝑑. 𝑒. 𝐽 π‘ˆ πœ„ ≀ 1 𝑑. 𝑒. 𝐡𝑦 ≀ 𝑐 𝑛 𝑦 ∈ 𝑆 π‘œ πœ„ ∈ 𝑆 + Every vector 𝑣 𝑗 in matrix 𝑉 is a solution of n equations in constraint 𝐡𝑦 ≀ 𝑐 π‘ž π‘“π‘Ÿπ‘£π‘π‘’π‘—π‘π‘œπ‘‘ 𝑑𝑝𝑛𝑐 π‘ž, π‘œ π‘žπ‘π‘‘π‘‘π‘—π‘π‘šπ‘“ π‘œ π‘€π‘π‘ π‘—π‘π‘π‘šπ‘“π‘‘ 𝑀𝑓𝑠𝑒𝑓𝑦 π‘žπ‘π‘—π‘œπ‘’π‘‘. 14

  15. 1. Implicit vs Explicit Enumeration of Convex Set Explicit Enumeration 𝐡𝑦 + 𝑐 𝑑 π‘ˆ 𝑦 + 𝑒 > 0, 𝑦 ∈ 𝐷 4 } (Projective Function) 𝑇 4 = 𝑑 π‘ˆ 𝑦 + 𝑒 𝑨 𝑒 𝑨 ∈ 𝑆 π‘œ , 𝑒 > 0, 𝑨, 𝑒 ∈ 𝐷 5 } (Perspective Function) 𝑇 5 = 𝑇 4 is convex if 𝐷 4 is convex 𝑇 5 is convex if 𝐷 5 is convex 15

  16. 1. Implicit vs Explicit Enumeration of Convex Set Statement: 𝑇 5 𝑗𝑑 π‘‘π‘π‘œπ‘€π‘“π‘¦ . Proof: 𝑨 1 𝑨 2 Given ∈ 𝑇 5 , ∈ 𝑇 5 , 𝑒 1 𝑒 2 Let us set 𝑨 3 = 𝛽𝑨 1 + β𝑨 2 , 𝑒 3 = 𝛽𝑒 1 + 𝛾𝑒 2 , βˆ€π›½ + 𝛾 = 1, 𝛽, 𝛾 β‰₯ 0 We then have 𝑨 3 = 𝛽𝑨 1 + β𝑨 2 𝛽𝑒 1 𝑨 1 𝛾𝑒 2 𝑨 2 = + 𝑒 3 𝛽𝑒 1 + β𝑒 2 𝛽𝑒 1 + β𝑒 2 𝑒 1 𝛽𝑒 1 + β𝑒 2 𝑒 2 𝛽𝑒 1 𝛾𝑒 2 Let 𝛽 β€² = , 𝛾 β€² = 𝛽𝑒 1 + β𝑒 2 𝛽𝑒 1 + β𝑒 2 (Note that 𝛽 β€² + 𝛾 β€² = 1, 𝛽 β€² , 𝛾 β€² β‰₯ 0), we have 𝑨 3 = 𝛽 β€² 𝑨 1 + 𝛾 β€² 𝑨 2 ∈ 𝑇 5 𝑒 3 𝑒 1 𝑒 2 Therefore, by definition 𝑇 5 is convex . 16

  17. 2. Convex Set Terms and Definitions Definitions: Affine Set, Cone, and Convex Hull Given 𝑣 1 , 𝑣 2 , β‹― , 𝑣 𝑙 ∈ 𝑆 π‘œ , function 𝑔 𝑣, πœ„ = πœ„ 1 𝑣 1 + πœ„ 2 𝑣 2 + β‹― + πœ„ 𝑙 𝑣 𝑙 and two conditions 1. πœ„ 1 +πœ„ 2 + β‹― + πœ„ 𝑙 = 1 2. πœ„ 𝑗 β‰₯ 0 βˆ€π‘— i. f u, ΞΈ condition 1}: Affine set ii. f u, ΞΈ condition 2}: Cone iii. f u, ΞΈ conditions 1 and 2}: Convex hull 𝐹𝑦1: πœ„ 1 𝑣 1 + πœ„ 2 𝑣 2 = 𝑣 1 + πœ„ 2 (𝑣 2 βˆ’ 𝑣 1 ) 𝐹𝑦2: πœ„ 1 𝑣 1 + πœ„ 2 𝑣 2 + πœ„ 3 𝑣 3 17

  18. 2. Sets and Definitions Definitions: Hyperplane and Half Spaces 𝑦 𝑏 π‘ˆ 𝑦 = 𝑐}, 𝑏 ∈ 𝑆 π‘œ , 𝑐 ∈ 𝑆 Hyperplane 𝑦 𝑏 π‘ˆ (𝑦 βˆ’ 𝑦 0 ) = 0}, for any 𝑦 0 ∈ 𝑆 π‘œ , 𝑏 ∈ 𝑆 π‘œ , 𝑐 ∈ 𝑆 or 𝑦 𝑏 π‘ˆ 𝑦 ≀ 𝑐} 𝑏 ∈ 𝑆 π‘œ , 𝑐 ∈ 𝑆 Half Space 𝑦 𝑏 π‘ˆ (𝑦 βˆ’ 𝑦 0 ) ≀ 0} or 𝑦 1 𝑦 2 βˆ’ 0.5 𝐹𝑦: 𝑦 𝑦 1 + 𝑦 2 = 1} 𝑝𝑠 𝑦 [1,1] = 0} 0.5 𝑔 𝑦 1 , 𝑦 2 = 𝑦 1 + 𝑦 2 βˆ’ 1 𝑦 𝑏 π‘ˆ (𝑦 βˆ’ 𝑦 0 ) ≀ 0}, 𝑏 π‘ˆ = [1,1], 𝑐 = 1, 𝑦 0 = [2, βˆ’1] 𝑏 π‘ˆ 𝑐 normalize the expression: 𝑏 2 𝑦 = 𝑏 2 18

  19. 2. Sets and Definitions: Hyperplanes Ex : 3 variables 𝑦|𝑏 π‘ˆ 𝑦 = 𝑐 , 𝑏 π‘ˆ = 1,1,1 , 𝑐 = 6 Ex : 4 variables 𝑦|𝑏 π‘ˆ 𝑦 = 𝑐 , 𝑏 π‘ˆ = 1,1,1,1 , 𝑐 = 6 (1) degrees of freedom : π‘œ βˆ’ 1 𝑆 π‘œ . (2) all vectors ( 𝑦 βˆ’ 𝑧) are orthogonal to direction 𝑏 , i.e. 𝑏 π‘ˆ 𝑦 βˆ’ 𝑧 = 0, βˆ€π‘¦, 𝑧 in the hyperplane Proof: Exercise: Conceptually (visually) construct hyperplane. 19

  20. 2. Sets and Definitions: Hyperplanes Hyperplane : as an Equal potential of cost function 0 𝑦 = 𝑑 π‘ˆ 𝑦 min𝑔 𝑦 1 𝑓. 𝑕. 1, 2 𝑦 2 πœ–π‘” 0 𝑦 πœ–π‘¦ 1 = 1 πœ–π‘” 0 𝑦 πœ–π‘¦ 2 = 2 Vector 𝑑 is the sensitivity or cost of vector 𝑦 1 𝑦 2 20

  21. 2. Sets and Definitions Hyperplane : as a linearized constraint 𝑏 π‘ˆ 𝑦 ≀ 𝑐 𝑦 1 𝑓. 𝑕. 1, 2 𝑦 2 ≀ 10 Remark : β€’ Hyperplane is one key building block of convex optimization. (theory, algorithms, applications for machine learning, deep learning, …) β€’ Each hyperplane separates the space into two half spaces. β€’ If π‘œ β‰₯ π‘ž, π‘ž hyperplanes can separate the space into 2 π‘ž disjoint regions. 21

  22. 2. Sets and Definitions β…€. Polyhedra (plural) : Poly (many) Hedron (face) 𝑄 = 𝑦 𝐡𝑦 ≀ 𝑐, 𝐷𝑦 = 𝑒} π‘ˆ π‘ˆ 𝑑 1 𝑏 1 π‘ˆ π‘ˆ 𝑑 2 𝑏 2 𝐡 = C = … … π‘ˆ π‘ˆ 𝑑 π‘ž 𝑏 𝑛 22

  23. 2. Sets and Definitions β…€I. Matrix Space : Positive Semidefinite Cone β‘  𝑇 π‘œ = π‘Œ ∈ 𝑆 π‘œβ¨‰π‘œ π‘Œ = π‘Œ π‘ˆ } Symmetric Matrix π‘œ = π‘Œ ∈ 𝑇 π‘œ π‘Œ βͺ° 0} 𝑗. 𝑓. 𝑧 π‘ˆ π‘Œπ‘§ β‰₯ 0, βˆ€π‘§ β‘‘ 𝑇 + = π‘Œ ∈ 𝑇 π‘œ π‘Œ ≻ 0} π‘œ 𝑗. 𝑓. 𝑧 π‘ˆ π‘Œπ‘§ > 0, βˆ€π‘§ β‰  0 𝑇 ++ Ex: π‘Œ = 𝑦 𝑧 2 ⇔ 𝑦 β‰₯ 0, 𝑨 β‰₯ 0, 𝑦𝑨 β‰₯ 𝑧 2 𝑨 ∈ 𝑇 + 𝑧 [𝑏 𝑐]π‘Œ 𝑏 𝑐 = 𝑏 2 𝑦 + 𝑐 2 𝑨 + 2𝑏𝑐𝑧 β‰₯ 0, βˆ€π‘, 𝑐 ∈ ℝ 23

  24. 2. Sets and Definitions 𝑦 𝑧 1 0 βˆ’π‘¦ βˆ’1 𝑧 = 𝑦 0 1 Proof : βˆ’π‘¦ βˆ’1 𝑧 𝑨 βˆ’ 𝑦 βˆ’1 𝑧 2 𝑧 𝑨 1 0 0 1 βˆ’π‘¦ βˆ’1 𝑧 Let 𝑆 = 1 0 1 We have 𝑏 𝑐 π‘Œ 𝑏 𝑐 = [𝑏 𝑐]𝑆 βˆ’π‘ˆ 𝑆 π‘ˆ π‘Œπ‘†π‘† βˆ’1 𝑏 𝑐 = 𝑏 𝑐 𝑆 βˆ’π‘ˆ 𝑦 𝑨 βˆ’ 𝑦 βˆ’1 𝑧 2 𝑆 βˆ’1 𝑏 0 0 𝑐 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend