lecture 1 wireless channel
play

Lecture 1 Wireless Channel I-Hsiang Wang ihwang@ntu.edu.tw - PowerPoint PPT Presentation

Lecture 1 Wireless Channel I-Hsiang Wang ihwang@ntu.edu.tw 2/20, 2014 Wireless channels vary at two scales Channel quality Time Large-scale fading: path loss, shadowing, etc. Small-scale fading:


  1. Lecture ¡1 Wireless ¡Channel I-Hsiang Wang ihwang@ntu.edu.tw 2/20, 2014

  2. Wireless ¡channels ¡vary ¡at ¡two ¡scales Channel quality Time • Large-scale fading: path loss, shadowing, etc. • Small-scale fading: constructive/destructive interference 2

  3. Large-­‑Scale ¡Fading • Path loss and Shadowing ∝ 1 - In free space, received power r 2 1 - With reflections and obstacles, can attenuate faster than r 2 • Variation over time: very slow, order of seconds • Critical for coverage and cell-cite planning 3

  4. Small-­‑Scale ¡Fading • Multipath fading: due to constructive and destructive interference of the waves • Channel varies when the mobile moves a distance of the order of the carrier wavelength λ - Typical carrier frequency ~ 1GHz ⇒ λ ≈ c/f = 0 . 3m = • Variation over time: order of hundreds of microseconds • Critical for design of communication systems 4

  5. Plan • Understand how physical parameters impact a wireless channel from the communication system point of view. Physical parameters such as - Carrier frequency - Mobile speed - Bandwidth - Delay spread - etc. • Start with deterministic physical models • Progress towards statistical models 5

  6. Outline • Physical modeling of wireless channels • Deterministic Input-output model • Time and frequency coherence • Statistical models 6

  7. Physical ¡Model: ¡ Warm-­‑up ¡Examples

  8. Physical ¡Model: ¡Simple ¡Example ¡1 d r Transmitted Waveform (electric field): cos 2 π ft t − r ⇣ ⌘ Received Waveform (path 1): α r cos 2 π f c ✓ ◆ t − 2 d − r α Received Waveform (path 2): − 2 d − r cos 2 π f c = ⇒ Received Waveform (aggregate): ✓ ◆ t − 2 d − r t − r ⇣ ⌘ α α r cos 2 π f 2 d − r cos 2 π f − c c 8

  9. Physical ¡Model: ¡Simple ¡Example ¡1 d r Transmitted Waveform (electric field): cos 2 π ft Received Waveform (aggregate): ✓ ◆ t − 2 d − r t − r ⇣ ⌘ α α r cos 2 π f 2 d − r cos 2 π f − c c T d Phase Di ff erence between the two sinusoids: Delay Spread : ⇢ 2 π f (2 d − r ) � − 2 π fr = 2 π (2 d − r ) − r ∆ θ = + π f + π difference c c c between delays ( 2 n π , constructive interference = (2 n + 1) π , destructive interference 9

  10. Delay ¡Spread ¡and ¡Coherence ¡Bandwidth • Delay spread � : difference between delays of paths T d • If frequency f change by �� 1 / (2 T d ) � � , then the combined received sinusoid move from peak to valley • Therefore, the frequency-variation scale is of the order of 1 T d W c := 1 • Coherence bandwidth T d 10

  11. Physical ¡Model: ¡Simple ¡Example ¡2 d r ( t ) = r 0 + vt v Transmitted Waveform (electric field): cos 2 π ft ✓ ◆ t − r ( t ) α Received Waveform (path 1): r ( t ) cos 2 π f c ✓ ◆ t − 2 d − r ( t ) α Received Waveform (path 2): − 2 d − r ( t ) cos 2 π f c = ⇒ Received Waveform (aggregate): ✓ ◆ ✓ ◆ t − r ( t ) t − 2 d − r ( t ) α α r ( t ) cos 2 π f 2 d − r ( t ) cos 2 π f − c c ⇣ � 1 − v t − r 0 1 + v t − 2 d − r 0 α h⇣ ⌘ i α ⌘ r 0 + vt cos 2 π f 2 d − r 0 − vt cos 2 π f = − c c c c 11

  12. Physical ¡Model: ¡Simple ¡Example ¡2 d v Approximation: distance to mobile Rx ⌧ distance to Tx = ⇒ Received Waveform (aggregate): ⇣ t − 2 d − r 0 � 1 − v t − r 0 1 + v h⇣ ⌘ i ⌘ α α = r 0 + vt cos 2 π f 2 d − r 0 − vt cos 2 π f − c c c c 2 α ✓ vt ◆ ✓ ◆ c + r 0 − d t − d r 0 + vt sin 2 π f sin 2 π f ≈ c c Time-invariant shift Time-varying amplitude of the original input waveform 12

  13. Physical ¡Model: ¡Simple ¡Example ¡2 t ✓ vt ◆ c + r 0 − d 2 α r 0 + vt sin 2 π f Time-varying envelope c Doppler Spread D s = 2 fv c Difference of the Doppler shifts of r 0 /v Time-variation scale: the two paths, cause this variation (seconds or minutes), over time. much smaller than that of c/fv Time-variation scale: �� (ms) the second term 13

  14. Doppler ¡Spread ¡and ¡Coherence ¡Time • Mobility causes time-varying delays (Doppler shift) • Doppler spread : difference between Doppler shifts of D s multiple signal paths • If time t change by � � 1 / (2 D s ) � � , then the combined received sinusoidal envelope move from peak to valley • Therefore, the time-variation scale is of the order of 1 D s T c := 1 • Coherence time D s 14

  15. What ¡we ¡learned ¡from ¡the ¡examples • Delay spread/coherence bandwidth and Doppler spread/ coherence time seem fundamental • However, it is difficult to derive the explicit received waveform mathematically. - Out of scope – EM wave theory • Instead, we construct useful input/output models, and take measurements to determine the parameters in the models 15

  16. Physical ¡Model: ¡ Input/Output ¡Relations

  17. Physical ¡Input/Output ¡Model • Wireless channels as linear time-varying systems: X y ( t ) = a i ( t ) x ( t − τ i ( t )) i a i ( t ): gain of path i τ i ( t ): delay of path i • Recall Example 2: d r ( t ) v x ( t ) = cos 2 π ft | α | τ 1 ( t ) = r 0 + vt a 1 ( t ) = r 0 + vt c | α | τ 2 ( t ) = 2 d − r 0 − vt π a 2 ( t ) = − 2 d − r 0 − vt 2 π f c 17

  18. X y ( t ) = a i ( t ) x ( t − τ i ( t )) Physical ¡Input/Output ¡Model i • Wireless channels as linear time-varying systems: X y ( t ) = a i ( t ) x ( t − τ i ( t )) i a i ( t ): gain of path i τ i ( t ): delay of path i • Impulse response: X h ( τ , t ) y ( t ) = a i ( t ) x ( t − τ i ( t )) x ( t ) i X h ( τ , t ) = a i ( t ) δ ( τ − τ i ( t )) i • Frequency response: X a i ( t ) e − j 2 π f τ i ( t ) H ( f ; t ) = i 18

  19. Passband–Baseband ¡Conversion S ( f ) 1 f – f c – W W W f c – W – f c + f c + 2 2 2 2 • Communications takes place in a passband - Carrier frequency f c - Bandwidth W < 2 f c - Real signal s ( t ) 19

  20. Passband–Baseband ¡Conversion S ( f ) 1 f – f c – W W W f c – W – f c + f c + 2 2 2 2 S b ( f ) � √ 2 S � f + f c � f + f c > 0 � S b � f � = √ 2 0 f + f c ≤ 0 � f W W – 2 2 20

  21. Passband–Baseband ¡Conversion √ 2 cos 2 π f c t √ 2 cos 2 π f c t ℜ [ s b ( t )] ℜ [ s b ( t )] 1 X X – W W 2 2 + s ( t ) ℑ [ s b ( t )] ℑ [ s b ( t )] 1 X X – W W 2 2 – √ 2 sin 2 π f c t – √ 2 sin 2 π f c t √ s � t � = 1 s b � t � e j2 � f c t + s ∗ b � t � e − j2 � f c t � s b � t � e j2 � f c t � � � 2 ℜ √ = 2 21

  22. Baseband ¡System ¡Architecture √ 2 cos 2 π f c t √ 2 cos 2 π f c t 1 ℜ [ x b ( t )] ℜ [ y b ( t )] X X – W W 2 2 x ( t ) y ( t ) + h ( τ , t ) 1 ℑ [ x b ( t )] ℑ [ y b ( t )] X X – W W 2 2 – √ 2 sin 2 π f c t – √ 2 sin 2 π f c t X a b y b ( t ) = i ( t ) x b ( t − τ i ( t )) , i i ( t ) := a i ( t ) e − j 2 π f c τ i ( t ) where a b 22

  23. Continuous-­‑time ¡Baseband ¡Model • Complex baseband equivalent channel: X a b y b ( t ) = i ( t ) x b ( t − τ i ( t )) x b ( t ) h b ( τ , t ) i X a b h b ( τ , t ) = i ( t ) δ ( τ − τ i ( t )) , i i ( t ) := a i ( t ) e − j 2 π f c τ i ( t ) where a b • Frequency response: shifted from passband to baseband H b ( f ; t ) = H ( f + f c ; t ) • Each path is associated with a delay and a complex gain 23

  24. Modulation ¡and ¡Sampling • Modern communication systems are digitized, (partially) thanks to sampling theorem • Our baseband signal can be represented as follows: X x b ( t ) = x [ n ]sinc( Wt − n ) , n sinc( t ) := sin π t x [ n ] := x n ( n/W ) , π t 24

  25. Modulation ¡and ¡Sampling √ 2 cos 2 π f c t √ 2 cos 2 π f c t 1 ℜ [ y b ( t )] ℜ [ y [ m ]] ℜ [ x b ( t )] ℜ [ x [ m ]] X sinc ( Wt – n ) X –W W 2 2 x ( t ) y ( t ) + h ( τ , t ) 1 ℑ [ y b ( t )] ℑ [ x b ( t )] ℑ [ y [ m ]] ℑ [ x [ m ]] X X sinc ( Wt – n ) –W W 2 2 – √ 2 sin 2 π f c t – √ 2 sin 2 π f c t X y [ m ] = h l [ m ] x [ m − l ] , l X a b where h l [ m ] := i ( m/W )sinc [ l − τ i ( m/W ) W ] i 25

  26. Discrete-­‑Time ¡Baseband ¡Model • Discrete-time channel model X y [ m ] = h l [ m ] x [ m − l ] x [ m ] h l [ m ] l X a b h l [ m ] := i ( m/W )sinc [ l − τ i ( m/W ) W ] i • Note: the l -th tap h l contains contributions mostly for the paths that have delays that lie inside the bin (roughly)  l � 2 W , l 1 1 W + W − 2 W 1 • System resolves the multipaths up to delays of W 26

  27. Multipath ¡Resolution 1 X W a b h l [ m ] := i ( m/W )sinc [ l − τ i ( m/W ) W ] i • sinc( t ) vanish quickly outside of i = 0 Main contribution l = 0 the interval [-0.5, 0.5] (roughly) i = 1 Main contribution l = 0 • The peak of the i -th translated sinc lies at τ i i = 2 Main contribution l = 1 • To contribute significantly to h l , i = 3 Main contribution l = 2 the delay must fall inside  l � 2 W , l 1 1 W + i = 4 Main contribution l = 2 W − 2 W l 0 1 2 27

  28. Time ¡and ¡Frequency ¡ Coherence

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend