lattices from worst case to average case to cryptography
play

Lattices: From Worst-Case, to Average-Case, to Cryptography Chris - PowerPoint PPT Presentation

Lattices: From Worst-Case, to Average-Case, to Cryptography Chris Peikert Georgia Institute of Technology Public Key Cryptography and the Geometry of Numbers 6 May 2010 1 / 16 Talk Agenda 1 Smoothing and discrete Gaussians 2 From worst-case


  1. Lattices: From Worst-Case, to Average-Case, to Cryptography Chris Peikert Georgia Institute of Technology Public Key Cryptography and the Geometry of Numbers 6 May 2010 1 / 16

  2. Talk Agenda 1 Smoothing and discrete Gaussians 2 From worst-case to average-case 3 Basic crypto applications 2 / 16

  3. Part 1: The Smoothing Parameter and Discrete Gaussians ◮ D. Micciancio, O. Regev (FOCS 2004) “Worst-Case to Average-Case Reductions Based on Gaussian Measures” ◮ C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008) “Trapdoors for Hard Lattices and New Cryptographic Constructions” 3 / 16

  4. The Smoothing Parameter [AR’04,MR’04] ◮ Gaussian function ρ ( x ) = e − π � x � 2 . Scaled: ρ s ( x ) = ρ ( x / s ) . Dual L ∗ Primal L ˆ f ( w ) ∝ ρ 1 / s ( w ) for w ∈ L ∗ f s ( x ) ∝ ρ s ( L + x ) 4 / 16

  5. The Smoothing Parameter [AR’04,MR’04] ◮ Gaussian function ρ ( x ) = e − π � x � 2 . Scaled: ρ s ( x ) = ρ ( x / s ) . Dual L ∗ Primal L ˆ f ( w ) ∝ ρ 1 / s ( w ) for w ∈ L ∗ f s ( x ) ∝ ρ s ( L + x ) 4 / 16

  6. The Smoothing Parameter [AR’04,MR’04] ◮ Gaussian function ρ ( x ) = e − π � x � 2 . Scaled: ρ s ( x ) = ρ ( x / s ) . Dual L ∗ Primal L ˆ f ( w ) ∝ ρ 1 / s ( w ) for w ∈ L ∗ f s ( x ) ∝ ρ s ( L + x ) 4 / 16

  7. The Smoothing Parameter [AR’04,MR’04] ◮ Gaussian function ρ ( x ) = e − π � x � 2 . Scaled: ρ s ( x ) = ρ ( x / s ) . Dual L ∗ Primal L ˆ f ( w ) ∝ ρ 1 / s ( w ) for w ∈ L ∗ f s ( x ) ∝ ρ s ( L + x ) 4 / 16

  8. The Smoothing Parameter [AR’04,MR’04] ◮ Gaussian function ρ ( x ) = e − π � x � 2 . Scaled: ρ s ( x ) = ρ ( x / s ) . Dual L ∗ Primal L ˆ f ( w ) ∝ ρ 1 / s ( w ) for w ∈ L ∗ f s ( x ) ∝ ρ s ( L + x ) Definition: Smoothing Parameter smooth ( L ) = min s > 0 such that ρ ( s L ∗ \ { 0 } ) ≤ negl ( n ) 4 / 16

  9. The Smoothing Parameter [AR’04,MR’04] ◮ Gaussian function ρ ( x ) = e − π � x � 2 . Scaled: ρ s ( x ) = ρ ( x / s ) . Dual L ∗ Primal L ˆ f ( w ) ∝ ρ 1 / s ( w ) for w ∈ L ∗ f s ( x ) ∝ ρ s ( L + x ) Key Fact For s ≥ smooth ( L ) , every coset has equal ∗ mass: ρ s ( L + x ) ≈ ρ s ( L ) . 4 / 16

  10. Smoothing Parameter of Z n Theorem smooth ( Z n ) ≤ ω ( √ log n ) 5 / 16

  11. Smoothing Parameter of Z n Theorem smooth ( Z n ) ≤ ω ( √ log n ) Need to show: ρ ( s Z n \ { 0 } ) ≤ negl when s = ω ( √ log n ) . s O 5 / 16

  12. Smoothing Parameter of Z n Theorem smooth ( Z n ) ≤ ω ( √ log n ) Need to show: ρ ( s Z n \ { 0 } ) ≤ negl when s = ω ( √ log n ) . Lemma: Tail Bound [Banaszczyk’95] For any lattice L , ) ≤ 2 exp ( − π s 2 ) · ρ ( L ) ρ ( L \ s O 5 / 16

  13. Smoothing Parameter of Z n Theorem smooth ( Z n ) ≤ ω ( √ log n ) Need to show: ρ ( s Z n \ { 0 } ) ≤ negl when s = ω ( √ log n ) . Lemma: Tail Bound [Banaszczyk’95] For any lattice L , ) ≤ 2 exp ( − π s 2 ) · ρ ( L ) ρ ( L \ s O 5 / 16

  14. Smoothing Parameter of Z n Theorem smooth ( Z n ) ≤ ω ( √ log n ) Need to show: ρ ( s Z n \ { 0 } ) ≤ negl when s = ω ( √ log n ) . Lemma: Tail Bound [Banaszczyk’95] For any lattice L , ) ≤ 2 exp ( − π s 2 ) · ρ ( L ) ρ ( L \ s O By union bound, p := ρ ( s Z n \ { 0 } ) = ρ ( s Z n \ ) ≤ n · negl · ρ ( s Z n ) = negl · ( 1 + p ) . � 5 / 16

  15. Smoothing Parameter of Any Lattice [MR’04,GPV’08] ◮ Gram-Schmidt orthogonalization � B . (Note: � � B � := max i � � b i � ≤ max i � b i � ) Dual L ∗ Primal L b 2 � b 2 � b 1 = b 1 6 / 16

  16. Smoothing Parameter of Any Lattice [MR’04,GPV’08] ◮ Gram-Schmidt orthogonalization � B . (Note: � � B � := max i � � b i � ≤ max i � b i � ) Theorem B � · ω ( √ log n ) . Let B be any basis of L . Then smooth ( L ) ≤ � � Dual L ∗ Primal L b 2 � b 2 � b 1 = b 1 6 / 16

  17. Smoothing Parameter of Any Lattice [MR’04,GPV’08] ◮ Gram-Schmidt orthogonalization � B . (Note: � � B � := max i � � b i � ≤ max i � b i � ) Theorem B � · ω ( √ log n ) . Let B be any basis of L . Then smooth ( L ) ≤ � � ◮ Dual basis: � b ∗ i , b j � = δ ij . (GSO in reverse.) Dual L ∗ Primal L � b ∗ 2 = b ∗ 2 b 2 � b 2 � b 1 = b 1 � b ∗ 1 b ∗ 1 6 / 16

  18. Smoothing Parameter of Any Lattice [MR’04,GPV’08] ◮ Gram-Schmidt orthogonalization � B . (Note: � � B � := max i � � b i � ≤ max i � b i � ) Theorem B � · ω ( √ log n ) . Let B be any basis of L . Then smooth ( L ) ≤ � � ◮ Dual basis: � b ∗ Fact: � � i � = 1 / � � b ∗ i , b j � = δ ij . (GSO in reverse.) b i � Dual L ∗ Primal L � b ∗ 2 = b ∗ 2 b 2 � b 2 � b 1 = b 1 � b ∗ 1 b ∗ 1 6 / 16

  19. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 7 / 16

  20. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 1 x belongs to uniform ∗ coset L + c [ ∀ c , ρ s ( L + c ) ≈ ρ s ( L ) ] 7 / 16

  21. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 1 x belongs to uniform ∗ coset L + c [ ∀ c , ρ s ( L + c ) ≈ ρ s ( L ) ] 2 Given c , conditional distrib of x ∈ L + c is: D L + c , s ( x ) ∝ ρ s ( x ) . 7 / 16

  22. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 1 x belongs to uniform ∗ coset L + c [ ∀ c , ρ s ( L + c ) ≈ ρ s ( L ) ] 2 Given c , conditional distrib of x ∈ L + c is: D L + c , s ( x ) ∝ ρ s ( x ) . Gaussian-like Properties 1 High probability tail bounds: for x ∼ D L + c , s , s · √ n � x � ≤ � for unit u , |� x , u �| ≤ s · ω ( log n ) 7 / 16

  23. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 1 x belongs to uniform ∗ coset L + c [ ∀ c , ρ s ( L + c ) ≈ ρ s ( L ) ] 2 Given c , conditional distrib of x ∈ L + c is: D L + c , s ( x ) ∝ ρ s ( x ) . Gaussian-like Properties 1 High probability tail bounds: for x ∼ D L + c , s , s · √ n � x � ≤ � for unit u , |� x , u �| ≤ s · ω ( log n ) 2 Additive: if x ∼ D L + c , s and y ∼ D L + d , t , then x + y ∼ D L + c + d , √ s 2 + t 2 7 / 16

  24. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 1 x belongs to uniform ∗ coset L + c [ ∀ c , ρ s ( L + c ) ≈ ρ s ( L ) ] 2 Given c , conditional distrib of x ∈ L + c is: D L + c , s ( x ) ∝ ρ s ( x ) . Gaussian-like Properties 1 High probability tail bounds: for x ∼ D L + c , s , s · √ n � x � ≤ � for unit u , |� x , u �| ≤ s · ω ( log n ) 2 Additive: if x ∼ D L + c , s and y ∼ D L + d , t , then x + y ∼ D L + c + d , √ s 2 + t 2 3 Unpredictable: min-entropy ≥ n 7 / 16

  25. Discrete Gaussians over Lattices Suppose x ∼ Gauss ( s ) for s ≥ smooth ( L ) . 1 x belongs to uniform ∗ coset L + c [ ∀ c , ρ s ( L + c ) ≈ ρ s ( L ) ] 2 Given c , conditional distrib of x ∈ L + c is: D L + c , s ( x ) ∝ ρ s ( x ) . Gaussian-like Properties 1 High probability tail bounds: for x ∼ D L + c , s , s · √ n � x � ≤ � for unit u , |� x , u �| ≤ s · ω ( log n ) 2 Additive: if x ∼ D L + c , s and y ∼ D L + d , t , then x + y ∼ D L + c + d , √ s 2 + t 2 3 Unpredictable: min-entropy ≥ n 4 Many more . . . 7 / 16

  26. Sampling a Discrete Gaussian [GPV’08,P’10] ◮ Given basis B and c ∈ R n , efficiently sample D L− c , s for s ≥ � � B � ⋆ Output distribution is ‘oblivious’ to input basis B 8 / 16

  27. Sampling a Discrete Gaussian [GPV’08,P’10] ◮ Given basis B and c ∈ R n , efficiently sample D L− c , s for s ≥ � � B � ⋆ Output distribution is ‘oblivious’ to input basis B ◮ “Nearest-plane” algorithm w/ randomized rounding [Babai’86,Klein’00] b 2 c b 1 8 / 16

  28. Sampling a Discrete Gaussian [GPV’08,P’10] ◮ Given basis B and c ∈ R n , efficiently sample D L− c , s for s ≥ � � B � ⋆ Output distribution is ‘oblivious’ to input basis B ◮ “Nearest-plane” algorithm w/ randomized rounding [Babai’86,Klein’00] b 2 c b 1 8 / 16

  29. Sampling a Discrete Gaussian [GPV’08,P’10] ◮ Given basis B and c ∈ R n , efficiently sample D L− c , s for s ≥ � � B � ⋆ Output distribution is ‘oblivious’ to input basis B ◮ “Nearest-plane” algorithm w/ randomized rounding [Babai’86,Klein’00] b 2 c b 1 8 / 16

  30. Sampling a Discrete Gaussian [GPV’08,P’10] ◮ Given basis B and c ∈ R n , efficiently sample D L− c , s for s ≥ � � B � ⋆ Output distribution is ‘oblivious’ to input basis B ◮ “Nearest-plane” algorithm w/ randomized rounding [Babai’86,Klein’00] b 2 c b 1 8 / 16

  31. Sampling a Discrete Gaussian [GPV’08,P’10] ◮ Given basis B and c ∈ R n , efficiently sample D L− c , s for s ≥ � � B � ⋆ Output distribution is ‘oblivious’ to input basis B ◮ “Nearest-plane” algorithm w/ randomized rounding [Babai’86,Klein’00] b 2 c b 1 ◮ Proof: by smoothing, D L− c , s ( plane ) depends only on dist ( c , plane ) 8 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend