large n f contributions to the four loop splitting
play

Large- n f Contributions to the Four-Loop Splitting Functions in QCD - PowerPoint PPT Presentation

Large- n f Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arXiv:1610.07477 Joshua Davies Department of Mathematical Sciences University of Liverpool Collaborators: A. Vogt (University of Liverpool),


  1. Large- n f Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arXiv:1610.07477 Joshua Davies Department of Mathematical Sciences University of Liverpool Collaborators: A. Vogt (University of Liverpool), B. Ruijl, T. Ueda, J. Vermaseren (Nikhef) 25th International Workshop on Deep Inelastic Scattering and Related Topics 6th April

  2. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS I NTRODUCTION Deep Inelastic Scattering : a lepton scatters from a proton Boson Lepton Q C q,g Quark or Gluon p xp f q , f g Proton Boson: γ, H , Z 0 (Neutral Current) or W ± (Charged Current) � � Cross-section: σ ∼ � a F a ( x , Q 2 ) = � C a , q ⊗ f q + C a , g ⊗ f g a F a – “Structure Function” C a , j – “Coefficient Function” ⊗ – “Mellin Convolution” f j – “Parton Distribution Function” 1/16

  3. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS I NCLUSIVE DIS To compute C a , q , C a , g , we use the optical theorem . Compute forward scattering amplitudes : 2 ∼ Im Use Dim. Reg. ( D = 4 − 2 ε ). Divergences appear as poles in ε . Renormalization of a s removes UV poles. “Collinear” poles remain, � � C a , j = ˜ ˜ x , a s , Q 2 / µ 2 C a , j r , ε . 2/16

  4. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS C OLLINEAR F ACTORIZATION We need to deal with these collinear poles: renormalize the PDF. � � C a , j ⊗ ˜ ⊗ ˜ F a = ˜ x , a s , µ 2 f j = C a , j ⊗ Z ji r / µ 2 f , ε f i = C a , j ⊗ f j . C a , j is finite. Z ji contains only poles in ε . Factorization at scale µ 2 f , implies f j has scale dependence: d d d Z ji ⊗ ˜ Z jk ⊗ Z − 1 f j = f i = ⊗ f i . ki d ln µ 2 d ln µ 2 d ln µ 2 f f f � �� � P ji ◮ this is the DGLAP evolution equation ◮ P ji are the Splitting Functions 3/16

  5. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS S PLITTING F UNCTIONS Know Z ji from calculation of ˜ C a , j , so we can extract P ji . PDFs are universal to all hadron interactions; Splitting Functions are also. DGLAP evolution: system of 2 n f +1 coupled equations. By defining the distributions n f n f � � ( f i + ¯ q ± ns , ij = ( f i ± ¯ f i ) − ( f j ± ¯ ( f i − ¯ q s = f i ) , f j ) , q V = f i ) , i = 1 i = 1 we have the evolution equations, (setting µ 2 f = Q 2 ): � q s � P qq � q s � � � d P qg = ⊗ , g P gq P gg g d ln Q 2 d d ln Q 2 q ± ns , ij = P ± ns q ± ns , ij , d d ln Q 2 q V = P V q V . 4/16

  6. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS I N M ELLIN SPACE ... Take the Mellin transform , � 1 F a ( N , Q 2 ) = d x x N − 1 ˆ F a ( x , Q 2 ) . 0 Now all convolutions ( ⊗ ) are simple products. We compute Mellin moments of ˜ C a , j , N = 2 , 4 , 6 , ... , not an analytic expression for arbitrary N (which gives x -space expression via IMT). ◮ Mellin moments of Splitting Functions P ij . Q: Given some fixed number of Mellin moments of P ij , can we derive an analytic expression for general N ? ◮ this is the goal of this project. 5/16

  7. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS S OFTWARE qgraf : generate diagrams (1.2 million!) [Nogueira ‘93] TFORM : physics, project Mellin moments. [Kuipers,Ueda,Vermaseren,Vollinga ‘13] Produces 2-point tensor integrals, which must be reduced to masters. To 3 loops, we can use MINCER . [Larin,Tkachov,Vermaseren ‘91] At 4 loops, FORCER . State of the art . [Ruijl,Ueda,Vermaseren] 6/16

  8. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS W HAT DO P ij “ LOOK LIKE ”? To a 3 s , written in terms of harmonic sums , N N ( − 1 ) i 1 � � S m ( N ) = i m , S − m ( N ) = , i m i = 1 i = 1 N [( − 1 ) i ] � S [ − ] m 1 , m 2 ,..., m l ( N ) = S m 2 ,..., m l ( i ) , i m i = 1 � � p and denominators , D p 1 i = . N + i Define ◮ harmonic weight : � l i = 1 | m i | , ◮ overall weight : harmonic weight + p . ∞ � P ( n ) a n + 1 P ij = ij . s n = 0 s , P ( n ) To a 3 written as terms of overall weight up to ( 2 n + 1 ) . ij 7/16

  9. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS 2-L OOP E XAMPLE � � P ( 1 ) � = − 8 ( 2 D 2 − 2 D 1 + D 0 ) S − 2 + 8 ( 2 D 2 − 2 D 1 + D 0 ) S 1 , 1 � qg C A n f � + 16 ( D 2 2 − D 2 1 ) S 1 + 8 ( 4 D 3 2 + 2 D 3 1 + D 3 0 ) OW 3 � 4 � 3 ( 44 D 2 2 + 12 D 2 1 + 3 D 2 − 0 ) OW 2 � 4 � + 9 ( 20 D − 1 − 146 D 2 + 153 D 1 − 18 D 0 ) OW 1 ◮ At overall weight i , up to factor ( 1 / 3 ) ( 3 − i ) , coefficients are integers . Possible basis: { S − 2 , S 1 , 1 , S 2 } · { D 0 , D 1 , D 2 } { S 1 } · { D 1 , 2 0 , D 1 , 2 1 , D 1 , 2 2 } { 1 } · { D 1 , 2 , 3 , D 1 , 2 , 3 , D 1 , 2 , 3 , D − 1 } 0 1 2 Assuming ( 1 / 3 ) ( 3 − i ) , need to determine 25 integer coefficients . 8/16

  10. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS 2-L OOP E XAMPLE Compute Mellin moments: � P ( 1 ) 35 / ( 3 3 ) � ( 2 ) = � qg C A n f � ( 4 ) = − 16387 / ( 2 3 3 2 5 3 ) P ( 1 ) � � qg C A n f � ( 6 ) = − 867311 / ( 2 3 3 3 5 1 7 3 ) P ( 1 ) � � qg C A n f � ( 8 ) = − 100911011 / ( 2 6 3 6 5 3 7 1 ) P ( 1 ) � � qg C A n f . . . With moments N = 2 , 4 , . . . , 50 we can solve for 25 basis coefficients. Can we do better? ◮ Use that the coefficients are integer . ◮ It is a system of Diophantine equations . 9/16

  11. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS L ATTICE B ASIS R EDUCTION Lenstra-Lenstra-Lov´ asz Lattice Basis Reduction: [Lenstra,Lenstra,Lov´ asz ‘82] ◮ find a short lattice basis in polynomial time ◮ can be used to find integer solutions to equations axb : ◮ part of calc [ www.numbertheory.org ] ◮ LLL-based solver for systems of Diophantine equations See also, Mathematica , Maple , fpLLL , ... , many more. To solve: �   P ( 1 ) C A n f ( 2 )     � b 1 ( 2 ) , . . . , b 25 ( 2 ) c 1 qg . . .       . .  = .   . . .      � b 1 ( m ) , . . . , b 25 ( m ) P ( 1 ) c 25 C A n f ( m ) � qg b i ( N ) , c i : basis elements, coefficients. c i ∈ Z . 10/16

  12. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS 2-L OOP E XAMPLE : R ECONSTRUCTION � Determines P ( 1 ) C A n f ( 25 integer coefficients) with just 9 Mellin moments. � qg ◮ solution, ( c 1 , . . . , c 25 ) = ( 2 , 6 , 72 , 8 , 88 , 584 , 4 , 24 , − 612 , − 80 , 0 , 0 , 4 , 0 , − 4 , 0 , 2 , 4 , − 4 , 2 , 4 , − 4 , 0 , 0 , 0 ) � �� � � �� � � �� � SW 0 SW 1 SW 2 What if the basis were incorrect? For e.g., leave out D − 1 : ◮ solve with N = 2 , . . . , 18 , ( − 43 , 423 , 123 , 1492 , − 102 , 1332 , 4 , 24 , − 612 , − 15 , 437 , 102 , − 2399 , 80 , 1700 , − 146 , 180 , − 26 , − 1065 , 670 , 579 , − 919 , 490 , 605 ) ◮ solve with N = 2 , . . . , 20 , ( − 178 , 4391 , − 25712 , 412 , − 10348 , − 6476 , 4 , 24 , − 612 , − 572 , 25401 , − 2178 , − 5642 , − 3526 , − 20152 , − 3302 , − 3161 , 6474 , − 4011 , 5092 , 3775 , − 3283 , − 4617 , 11029 ) Claim: these solutions are “obviously bad” . 11/16

  13. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS F OUR -L OOP S PLITTING F UNCTIONS Large- n f contributions: ◮ subset of diagrams, much easier for FORCER to compute ◮ smaller reconstruction bases (terms of lower overall weight) Singlet Splitting Functions , colour factors at n 3 f , P ( 3 ) qq { C F n 3 P ( 3 ) qg { C A n 3 f , C F n 3 f } f } P ( 3 ) gq { C F n 3 P ( 3 ) gg { C A n 3 f , C F n 3 f } f } Guess bases using lower order information. Number of coefficients: P ( 3 ) P ( 3 ) qq { 69 } qg { 125 , 101 } P ( 3 ) P ( 3 ) gq { 38 } gg { 34 , 54 } Moments used for reconstruction, (check), N = 2 , . . . P ( 3 ) P ( 3 ) qq { 30 ( 44 ) } qg {× ( × ) , 40 ( 54 ) } P ( 3 ) P ( 3 ) gq { 18 ( 28 ) } gg { 20 ( 28 ) , 26 ( 32 ) } 12/16

  14. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS H ARDEST S INGLET C ASE � P ( 3 ) f : Basis with 125 unknown integer coefficients. � qg C A n 3 N = 2 , . . . , 46 insufficient to determine a good solution. Moment calculations become very computationally demanding. Hardest diagram computed at N = 46 , ◮ ∼ 2 weeks wall-time [16 cores, 192GB RAM] ◮ ∼ 13TB peak disk usage by TFORM → no more moments! We need to somehow make the basis smaller. Use additional constraints : ◮ large- x limit: no irrational constants other than ζ i -1 coeff. ◮ # S 1 , 2 = − # S 2 , 1 -7 coeff. 117 unknowns. Solution with N = 2 , . . . , 44 , N = 46 checks. 13/16

  15. I NTRODUCTION S PLITTING F UNCTIONS LLL R ECONSTRUCTION C ONCLUSIONS N ON - SINGLET S PLITTING F UNCTIONS n 3 f terms of P ( 3 ) , ± are already known. [Gracey ‘94] ns f terms of P ( 3 ) , + (even N ) and P ( 3 ) , − We determine the n 2 (odd N ). ns ns Colour factors to determine at n 2 f : ◮ C 2 F n 2 f ◮ C A C F n 2 f – diagrams are very hard to compute! Method: decompose in two ways , � F A + C F ( C A − 2 C F ) B ± � P ( 3 ) , ± { n 2 f { C 2 F , C A C F }} = n 2 2 C 2 ns f � F ( A − B ± ) + C F C A B ± � = n 2 2 C 2 . f A should be common to both P ± ns ; use both odd and even N . Large n c . Compute (easier) C 2 F n 2 f diagrams to higher N to determine ( A − B ± ) . From these, determine B + and B − and hence P ( 3 ) , + and P ( 3 ) , − . � ns ns 14/16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend