landau level spectroscopy of graphene
play

Landau level spectroscopy of graphene (Raman scattering and - PowerPoint PPT Presentation

Landau level spectroscopy of graphene (Raman scattering and far-infrared absorption) Electron-phonon and electron-electron interactions Marek Potemski Laboratoire National des Champs Magntiques Intenses Grenoble High Magnetic Field Laboratory


  1. Landau level spectroscopy of graphene (Raman scattering and far-infrared absorption) Electron-phonon and electron-electron interactions Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UJF/UPS/INSA MOMB

  2. "The ZOO of magneto-phonon resonances in graphene" D.M. Basko, P. Leszczynski, C. Faugeras… et al., to be published PRL 114 , 126804, (2015)

  3. Why ? Graphene: a truly two-dimensional crystal of sp 2 –bonded carbon Graphene-Based Revolutions in ICT And Beyond This talk: fundamental properties studied with magnetic fields (spectroscopy)

  4. Dispersion relations and corresponding Landau level ladders Electronic states, generic (quasi) 2D structure of sp 2 carbon (Bernal stacking) ~ graphene + (effective) bilayers  = = E E ( B ) E E ( k ) n i ! > = B 0 B 0

  5. Dispersion relations and corresponding Landau level ladders Electronic states, generic (quasi) 2D structure of sp 2 carbon (Bernal stacking) ~ graphene + (effective) bilayers  = = E E ( B ) E E ( k ) n i ?! > = B 0 B 0

  6. Landau level spectroscopy L → L Probing inter Landau level excitations : i j E L j B L j

  7. Absorption/transmission Selection rules ν h = 4 + + σ n ∆ n = ± σ − 1 , E + = 3 n B + ∆ = + σ + = 2 n 1 : n + = 1 n ∆ = − σ − n 1 : = ν T T ( h , B ) and = 0 n ∆ n = 2 , 4 , 5 , 7 , 8 resonant when B ν = h E if trigonal warping exc = 1 − n = 2 − n − = 3 n V.P. Gusynin & S.G. Sharapov, PRB, 2006 M. Koshino & T. Ando, PRB, 2008 − = 4 n M. Mucha-Kruczynski et al., J. Phys., 2009 M.L. Sadowski et al., SSC, 2007

  8. Raman scattering Selection rules ν ν h ' h + σ + σ σ − σ − / / = 4 + n ∆ n = 0 E + = 3 n B strong + = 2 n σ + σ + σ − σ − / , / = ν − ν E exc h ' h = 1 + n optical fibers ∆ n = ± 2 = n 0 weaker σ + σ − σ − σ + B / , / excitation collection ∆ n = ± 1 = 1 − n if trigonal warping − = 2 or coupled to phonon B 30 T n T 1 K = 3 − n x,y,z-stage − = 4 n miniaturized optical bench Faugeras, Kossacki, Breslavetz, … O. Kashuba & V.I. Falko PRB, 2009; M. Mucha-Kruczynski et al., PRB, 2010

  9. What can be learned from magneto-optics ? √ Band structure Scattering: efficiency ( mechanism ) ?

  10. Scattering ? Classical condition for observation of cyclotron resonance (Landau quantization) τ > T scattering cyclotron e  τ > ω 1 / × S C B µ > 1 B / rough estimate of carrier mobility min More general : Γ ← τ 1 / Spectral broadening scat ← Γ = Γ ( B , E ) Scattering mechanisms

  11. What can be learned ? √ Band structure √ Scattering: efficiency ( and mechanism ) Interactions (?) : electron-phonon electron-electron

  12. Interactions ? tuning the excitations in resonance E E 0 L → L n m B

  13. Interactions ? resonant electron-phonon coupling ? E 3 E ph = E 1,3 2 1 E δ phonon n = 0 - 1 L → - 2 L n m - 3 B + more than this !! ← δ strength of interaction other magneto-phonon" resonance

  14. Electron-electron interactions and inter Landau level transitions Parabolic dispersions E equidistant LLs n = 2 π 2 1 e = E exch ε 2 2 l B n = 1 ω  E opt = E single particle = E single particle C n = 0 2 k ~ l e-h /l B Restoring single electron spectrum of excitations at k ~ 0 (Kohn theorem) k opt ~ 1/ λ << k coll ~1/l B Optics is useless to study the many-body effects !? e.g., C. Kalin, B.I. Halperin, PRB , 1984, Bychkov, Eliashberg, Iordanskii, (JETP Letters, 1981)

  15. Electron-electron interactions and inter Landau level transitions E Linear dispersions non-equidistant spacing ≠ E E n = 2 C exch n = 1 ∆ E opt = E single particle + E single particle corr ∆ = δ ÷ ∞ ? corr n = 0 2 k ~ l e-h /l B n = -1 A. Iyengar, et al., PRB, 2008 Yu.A. Bychkov, G. Martinez, PRB, 2008 J. Sari, C. Toke, PRB, 2013 R. Roldan et al., PRB, 2010 n = -2 YU.E. Lozovik, A.A. Sokolik, Nanoscale Research Lett., 2012 Expectations: ∆ γ ~ B ? Rather large deviations from corr nm effective single electron model ?

  16. Graphene: Electron-electron interactions at B=0

  17. OUTLINE Band structure mono to pentalayer graphene Scattering efficiency graphene on graphite: the best ever seen graphene Electron-phonon interaction the ZOO of magneto-phonon resonances Electron-electron interaction Conclusions

  18. What can be learned from magneto-optics ? Band structure !

  19. What can be learned from magneto-optics ? Band structure !

  20. What can be learned from magneto-optics ? Band structure !

  21. What can be learned from magneto-optics ? Band structure !

  22. What can be learned from magneto-optics ? Scattering: efficiency ( mechanism ) !

  23. Graphene on graphite: best ever seen graphene !! G. Li et al., PPRL, 2008

  24. Cyclotron resonance absorption : high temperature but well resolved LLs LL spacing > kT LL broadening < LL spacing E . non-equidistant spacing . . + L E 3 F + L 2 + L 1 multimode cyclotron resonance absorption L 0 − L 1 − L 2

  25. Graphene on graphite (Very) low field cyclotron resonance absorption 1 mT perfect Dirac states : m = ⋅ 6 v F 1 . 0 10 s Γ ≈ µ LL broadening : 35 eV ( 0 . 4 K ) P. Neugebauer et. al., PRL, 2009

  26. How perfect can graphene be ≅ ≅ ⋅ − ∗ = ≅ ⋅ − 9 2 2 3 E 6 . 5 meV , n 3 10 cm , m E / v 1 . 3 10 m F F F e 2 1 cm Landau level quantization µ > = 7 10 ⋅ down to B 0 = 1 mT 1 mT V s 2 e cm γ = µ τ ≈ µ = τ ≈ ⋅ ≈ µ 7 35 eV ( 0 . 4 K ) 20 ps , 3 10 , l 20 m ∗ ⋅ F m V s Also at 50 K ! = µ γ = 1 B T E 1 ≈ µ ≈ = > γ = B Earth 50 T E 0 . 25 meV 3 K 0 . 4 K 1 Pronounced Landau quantization in the magnetic field of the Earth P. Neugebauer et. al., PRL, 2009

  27. Graphene on graphite: magneto Raman scattering response phonons + search for a characteristic electronic response e.g., L -1 → L 1 inter Landau level excitation E B L -1 → L 1 2D band 150 150 a) b) 125 125 G band B=10T 2D band 100 100 1500 Distance ( µ m) Distance ( µ m) λ exc. =514.53nm 75 75 Temp.=4K L -1,1 50 50 Intensity (counts) L -1,2 /L -2,1 25 25 1000 0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 150 150 d) c) 125 125 500 100 100 Distance ( µ m) Distance ( µ m) 75 75 50 50 0 25 25 1400 1600 1800 2000 2200 2400 2600 2800 0 0 -1 ) Raman Shift (cm 0 25 50 75 100 125 150 0 25 50 75 100 125 150 Distance ( µ m) Distance ( µ m)

  28. Graphene on graphite: magneto-Raman scattering response: an overview 1200 1000 B=5.98T 800 Intensity (counts) B=4.98T 600 B=4.38T 400 Intensity (counts) B=3.88T 200 B=0T 0 1000 1200 1400 1600 1800 2000 2200 2400 2600 -1 ) Raman shift (cm B= 6T G 2D’’ 2D B=0T 2D’ 1500 2000 2500 3000 3500 -1 ) Raman shift (cm

  29. Graphene on graphite: magneto-Raman scattering response: an overview E 2g phonon + electonic excitations = 4 + n E + = 3 n = 2 + n = 1 + n = n 0 B − = 1 n = 2 − n = 3 − n = 4 − n C. Faugeras et al., PRL, 2011; M. Kühne et al., PRB, 2012, P. Leszczynski et. al , to be published

  30. Graphene on graphite: magneto-Raman scattering response: an overview focus on E 2g phonon C. Faugeras et al., PRL, 2011; M. Kühne et al., PRB, 2012, D. Basko et. al , to be published

  31. Interactions ? resonant electron-phonon coupling ! E E δ phonon L → L n m B ← δ strength of interaction

  32. In magnetic fields Resonant coupling of E 2g phonon ("optical") with Δ n=±1 inter Landau level excitations Theoretical predictions : T. Ando, JPSJ, 2007 M.O. Goerbig, et al., PRL , 2007 δ − σ + σ + σ − σ / / δ λ ⋅ ⋅ − λ ⋅ ⋅ − E B f f B f f ~ 2 ( ) ( 1 ) ~ ( 1 ) 1 res f i res f i

  33. Magneto-phonon resonance: graphene on graphite Raman shift (cm -1 ) 1600 1500 10 5 Magnetic field (T) Graphene on graphite: an electronic system of unprecedented quality ! J. Yan et al., PRL , 2010 C. Faugeras, et al., PRL, 2011; M. Kühne el al., PRB 2012

  34. Experiment: magneto-phonon resonance in epitaxial graphene 1630 E T 4 T 1 T 3 T 2 1620 Raman shift (cm-1) 1610 E 1 T 3 T 2 E F 1600 B 1590 1580 1570 1 2 3 4 5 B 1/2 (T 1/2 ) Neutral graphene λ = ⋅ − 3 4 . 5 10 C. Faugeras, et al., PRL, 2009

  35. Magneto-phonon resonance in doped graphene δ λ ⋅ ⋅ − ~ B ( 1 f ) f res f i Graphene flake on Si/SiO 2 P. Kossacki et al., Phys. Rev. B, 2012

  36. Magneto-phonon resonances: graphene on h-BN ~ neutral and better electronic quality Experiment in qualitative agreement with simulations 30 30 25 25 20 20 B (T) 15 B (T) 15 10 10 5 5 0 0 1500 1600 1700 1500 1600 1700 Raman shift (cm-1) Raman shift (cm-1) P. Leszczynski, A. Nicolet, C. Faugeras et al., to be published

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend