lambda nuclear interaction and hyperon puzzle in neutron
play

LAMBDA - NUCLEAR INTERACTION and HYPERON PUZZLE in NEUTRON STARS - PowerPoint PPT Presentation

Kyoto, 17 May 2017 LAMBDA - NUCLEAR INTERACTION and HYPERON PUZZLE in NEUTRON STARS Wolfram Weise T echnische U niversitt M nchen PHYSIK DEPARTMENT Equation of State of dense baryonic matter : constraints from massive neutron stars


  1. Kyoto, 17 May 2017 LAMBDA - NUCLEAR INTERACTION and HYPERON PUZZLE in NEUTRON STARS Wolfram Weise T echnische U niversität M ünchen PHYSIK DEPARTMENT Equation of State of dense baryonic matter : constraints from massive neutron stars Hyperon-nucleon interactions from SU(3) chiral effective field theory Hyperon-NN three-body forces Emerging repulsions : suppression of hyperons in dense neutron matter Stefan Petschauer, Johann Haidenbauer, et al. : Eur. Phys. J. A (2017) (arXiv: 1612.03758 [nucl-th]); Nucl. Phys. A 957 (2017) 347; Phys. Rev. C93 (2016) 014001; Eur. Phys. J. A52 (2016)15; Nucl. Phys. A915 (2013) 24 1

  2. 2

  3. Part I: Prologue Cons ts aints on Equa tj ons of Sta tf fs om massive Neu ts on Stars 3

  4. NEUTRON STARS and the EQUATION OF STATE of DENSE BARYONIC MATTER J. Lattimer, M. Prakash Phys. Reports 621(2016) 127 Phys. Reports 442 (2007) 109 Mass - Radius Relation quark matter ?? T olman- O ppenheimer- V olkov Equations NUCLEONIC MATTER ( M + 4 π Pr 3 )( E + P ) STRANGE dP dr = − G QUARK c 2 r ( r − GM / c 2 ) MATTER dM dr = 4 π r 2 E c 2 4

  5. Constraints from massive NEUTRON STARS P .B. Demorest et al. J. Antoniadis et al. Nature 467 (2010) 1081 Science 340 (2013) 6131 Shapiro delay measurement M M PSR J1614+2230 PSR J0348+0432 . 8 M ⇥ M = 1 . 97 ± 0 . 04 M = 2 . 01 ± 0 . 04 . 8 M ⇥ conditions conditions 5

  6. Population of MILLISECOND PULSARS J. Antoniadis et al. arXiv:1605.01665 0 . 5 1 . 0 1 . 5 2 . 0 ms pulsars in binaries 0 . 0 mass [ M � ] e.g. with white dwarfs double neutron stars Note: about 25% of population are mass [ M � ] massive n-stars ( M > 1 . 5 M � ) 6

  7. CONSTRAINTS from NEUTRON STARS (contd.) Atmosphere model fits of Comprehensive analysis of X-ray bursts 12 selected neutron stars SAX J1810.8-2609 R = ( 11 . 5 − 13 . 0 ) km ( M = 1 . 3 − 1 . 8 M solar ) J. Nättilä et al. : Astron. Astroph. 591 (2016) A25 F. Özel, D. Psaltis, T. Güver, G. Baym, C. Heinke, S. Guillot V.F. Suleimanov et al. : arXiv:1611.09885 Astroph. J. 820 (2016) 28 7

  8. CONSTRAINTS from NEUTRON STARS F. Özil, D. Psaltis: Phys. Rev. D80 (2009) 103003 F. Özil, G. Baym, T. Güver: Phys. Rev. D82 (2010)101301 3 Mass - 10 purely “ nuclear ” EoS ! 2.5 A. Akmal, V.R. Pandharipande, D.G. Ravenhall Radius 180 Phys. Rev. C 58 (1998) 1804 Relation 160 2 140 K. Hebeler, ) J. Lattimer, 120 M (M Ch. Pethick, 1.5 A. Schwenk: 100 Phys. Rev. Lett. kaon 105 (2010) 161102 80 condensate 1 60 r >>R ph A.W. Steiner, quark 40 J. Lattimer, E.F. Brown Astroph. J. 722 (2010) 33 matter 0.5 20 0 6 8 10 12 14 16 18 R (km) “ Exotic ” equations of state ruled out ? 8

  9. NEUTRON STAR MATTER from Chiral EFT and FRG Symmetry energy range: 30 - 35 MeV Crust: SLy EoS M. Drews, W. W. 2 . 0 Phys. Rev. C91 (2015) 035802 Chiral T. Hell, W. W. Prog. Part. Nucl. Phys. 1 . 5 ChEFT Phys. Rev. FRG 93 (2017) 69 C90 (2014) 045801 M / M � 1 . 0 Central Radius core density window 0 . 5 ρ c . 5 ρ 0 A.W. Steiner, J.M. Lattimer, E.F. Brown EPJ A52 (2016) 18 0 16 8 12 14 10 R ( km ) Chiral many-body dynamics using “conventional” (pion & nucleon) degrees of freedom is consistent with neutron star constraints 9

  10. … and extrapolation NEUTRON STAR MATTER to PQCD limit Equation of State A. Kurkela et al. Astroph. J. 789 (2014) 127 10000 10 2-tropes w/o neutron star mass constraint core region P 1000 1 pQCD . pQCD [ GeV / fm 3 ] 3-tropes w/o mass constraint 10 − 1 100 Polytropes ( with 2 M � mass constraint ) 2-tropes with mass constraint 10 − 2 10 Chiral NM − FRG Chiral EFT − FRG M. Drews, W. W. HLPS Phys. Rev. C91 (2015) 035802 . Neutron matter Neutron matter K. Hebeler et al. 10 − 3 1 APJ 773 (2013) 11 100 1000 10000 0 . 1 10 1 ε [ GeV / fm 3 ] 10

  11. NEUTRON STAR MATTER Equation of State In-medium C hiral E ffective F ield T heory up to 3 loops (reproducing thermodynamics of normal nuclear matter) 3-flavor PNJL (chiral quark) model at high densities (incl. strange quarks) PNJL, G v ⇥ 0.5 G Th. Hell, W. W. conventional Phys. Rev. C90 (2014) 045801 ( hadronic ) 200 PNJL, G v ⇥ 0 equation of state neutron star 100 P � MeV fm � 3 ⇥ seems to work quark - nuclear constraints quark - nuclear coexistence coexistence 20 can occur at baryon densities 10 ChEFT ρ > 5 ρ 0 realistic 5 pressure “ conventional ” EoS ( ρ 0 = 0 . 16 fm − 3 ) ( nucleons & pions ) see also: 1 K. Masuda, T. Hatsuda, T. Takatsuka 50 100 200 300 500 1000 2000 PTEP (2013) 7, 073D01 ⇤ � MeV fm � 3 ⇥ energy density 11

  12. NEUTRON STAR MATTER including HYPERONS In-medium C hiral E ffective F ield T heory (3-loops) plus hyperons (incl. potential consistent with hypernuclei) Λ 3-flavor PNJL model at high densities (incl. strange quarks) 1.0 T. Hell, W. W. Phys. Rev. C90 (2014) 045801 M max . 1 . 5 M � Particle n neutrons 0.8 composition: occurrence of 0.6 hyperons Λ r i ê r tot ρ i Fraction of quarks ρ d quarks µ n = µ Λ particle species 0.4 d u s u quarks L hyperons Λ as function of baryon density 0.2 s quarks protons p 0.0 0 2 4 6 8 10 ρ / ρ 0 r ê r 0 Equation of state too soft : maximum neutron star mass too low 12

  13. NEUTRON STAR MATTER including HYPERONS 1 3 n NN " EFT600 n NSC97a N NSC97c 2.5 NSC97f p NSC89 0.1 p J04 ! EFT600 e 2 K 0 =300 MeV a t =32 MeV M [M 0 ] 0.01 1.5 N + Λ K 0 =200 MeV H. Djapo, a t =32 MeV 1 B.-J. Schaefer, 0.001 µ J. Wambach Λ Phys. Rev. C81 # 0.5 (2010) 035803 0.0001 0 1 2 3 4 5 6 10 12 14 16 ! B [ ! 0 ] R [km] Adding hyperons : equation of state far too soft “Hyperon Puzzle” 13

  14. NEUTRON STAR MATTER including HYPERONS Q uantum M onte C arlo calculations using phenomenological hyperon-nucleon and hyperon-NN three-body interactions constrained by hypernuclei 2.8 QMC ChEFT PNM QMC 2.4 computations n − matter calculations PSR J0348+0432 (hyper-neutron matter): 2.0 “conventional” M Λ N + PSR J1614-2230 . � N + � NN (II) n-star matter M O Λ NN ( 2 ) 1.6 D. Lonardoni, ChEFT M [M 0 ] A. Lovato, Λ N + 1.2 S. Gandolfi, Λ NN ( 1 ) � N + � NN (I) T. Hell, W.W. F. Pederiva PRC90 (2014) 045801 0.8 Phys. Rev. Lett. 114 (2015) 092301 Λ N 0.4 � N 0.0 11 12 13 14 15 R [ km ] R [km] Inclusion of hyperons : EoS too soft to support 2-solar-mass n-stars unless: strong repulsion in YN and YNN … interactions 14

  15. Part II Hyperon - Nucle0n In tf rac tj ons fs om Chiral SU ( 3 ) E ff ec tj ve Field Ti eory 15

  16. Hierarchy of QUARK MASSES in QCD - Separation of Scales - 1 10 GeV 100 100 MeV 0 “ heavy ” quarks t b “ light ” quarks c u , d s PDG 2016 Basic principles of LOW - ENERGY QCD : Confinement of quarks & gluons in hadrons Chiral Symmetry SU ( 3 ) L × SU ( 3 ) R Spontaneously Explicitly broken broken by non - zero ( QCD dynamics ) quark masses 16

  17. Spontaneously Broken CHIRAL SYMMETRY SU ( 3 ) L × SU ( 3 ) R NAMBU - GOLDSTONE BOSONS : Pseudoscalar SU(3) meson octet { φ a } = { π , K , ¯ K , η 8 } DECAY CONSTANTS : Chiral limit: f = 86 . 2 MeV Order parameter : a (0) | φ b ( p ) ⟩ = i δ ab p µ f b ⟨ 0 | A µ 4 π f ∼ 1 GeV µ f π = 92 . 21 ± 0 . 16 MeV π axial current f K = 110 . 5 ± 0 . 5 MeV K ν π = − m u + m d G ell-Mann, uu + ¯ m 2 π f 2 ⟨ ¯ dd ⟩ 2 + higher order O akes, corrections R enner K = − m u + m s m 2 K f 2 ⟨ ¯ ss ⟩ uu + ¯ relations 2 17

  18. Chiral Effective Field Theory SU ( 3 ) L × SU ( 3 ) R Realization of Low-Energy QCD for energies / momenta Q < 4 π f ∼ 1 GeV based on SU(3) Non-Linear Sigma Model plus (heavy) baryons Pseudoscalar meson octet of SU ( 3 ) L × SU ( 3 ) R Nambu-Goldstone bosons coupled to baryon octet × Σ 0 π 0 2 + Λ Σ + η  π + K +  p   2 + √ √ √ √ 6 6 − Σ 0 − π 0 η 2 + Λ   K 0 Σ − , B = π − n P =   2 + √ √ √ √     6 6   − 2 η − 2 Λ Ξ 0 K 0 ¯ − Ξ − K − √ √ 6 6 (15) short distance meson-baryon + + + . . . dynamics: interaction contact terms vertices [ 8 ] [ 8 ] [ 8 ] [ 8 ] [ 8 ] [ 8 ] 18

  19. Chiral Effective Field Theory SU ( 3 ) L × SU ( 3 ) R Starting point: Meson-Baryon Lagrangian (chiral limit) � ¯ � ¯ � ¯ − D − F � � � � � L MB = tr B i γ µ D µ − M 0 B 2 tr B γ µ γ 5 { u µ , B } 2 tr B γ µ γ 5 [ u µ , B ] × π 0 Σ 0 η   2 + Λ π + K + Σ + 2 + p   √ √ √ √ 6 6 − π 0 − Σ 0 η   K 0 2 + Λ π − P = , B = Σ − 2 +  n  √ √ √ √   6  6    − 2 η − 2 Λ K 0 ¯ Ξ 0 K − − Ξ − √ √ 6 6 (15) Chiral covariant derivative: with D µ B = ∂ µ B + [ Γ µ , B ], space. The constant M 0 de B ], Γ µ = 1 2 ( u † ∂ µ u + u ∂ µ u † ) a ) and u µ = i( u † ∂ µ u − u ∂ µ u † ), denotes the baryon mass i n the three-flavor chiral lim Chiral (pseudoscalar Nambu-Goldstone boson) field : ! √ 2 P ( x ) transforms as U → R U L † U ( x ) = u 2 ( x ) = exp i f R ∈ SU (3) R L ∈ SU (3) L 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend