karl meerbergen matrix algorithms for parametric
play

Karl Meerbergen: Matrix algorithms for parametric dynamical systems - PowerPoint PPT Presentation

Karl Meerbergen: Matrix algorithms for parametric dynamical systems Applications Structures and vibrations, pharma-industry Uncertainty quantification Design optimization, PDE constrained optimization Bifurcation analysis (Distance


  1. Karl Meerbergen: Matrix algorithms for parametric dynamical systems Applications Structures and vibrations, pharma-industry ◮ Uncertainty quantification ◮ Design optimization, PDE constrained optimization Bifurcation analysis (Distance problems) (KU Leuven) Research overview May 6, 2015 1 / 20

  2. Karl Meerbergen: Matrix algorithms for parametric dynamical systems Applications Structures and vibrations, pharma-industry ◮ Uncertainty quantification ◮ Design optimization, PDE constrained optimization Bifurcation analysis (Distance problems) Linear algebra problems Eigenvalue problems: linear, non-linear Model reduction: linear, non-linear Linear systems: preconditioning Tensors (KU Leuven) Research overview May 6, 2015 1 / 20

  3. Karl Meerbergen: Matrix algorithms for parametric dynamical systems Applications Structures and vibrations, pharma-industry ◮ Uncertainty quantification ◮ Design optimization, PDE constrained optimization Bifurcation analysis (Distance problems) Linear algebra problems Exascale computing Eigenvalue problems: linear, Flanders ExaScience Lab non-linear (Intel) founded in June Model reduction: linear, 2010. non-linear Co-design lab for future Linear systems: preconditioning hardware for HPC Tensors (KU Leuven) Research overview May 6, 2015 1 / 20

  4. Parametric matrices in uncertainty analysis/optimization k = 60 q = 30 − −10 10 Full QMMR −11 10 −12 10 | y | [m 2 /(rad/s) 2 ] −13 10 −14 10 −15 10 −16 10 0 5 10 15 20 25 30 35 40 f [Hz] Large linear systems depending on parameters (frequency, physical parameters) ◮ Preconditioning for indefinite systems (= hard) ◮ Many linear systems to solve − → parametric model reduction Eigenvalue problem depending on (physical) parameters ◮ Eigenvalues play an important role in the dynamics of such problem ◮ Parametric modal truncation: Maryam Saadvandi, Wim Desmet (mechanical engineering) (KU Leuven) Research overview May 6, 2015 2 / 20

  5. Recycling/ Quadratic output SISO linear system ( K − ω 2 M ) x = f x ∗ Sx = y with S symmetric. (Joint with Van Beeumen, Van Nimmen, Lombaert) Method: ◮ Krylov space with f ⇒ V k = [ v 1 , . . . , v k ] ◮ Extract Ritz vectors (M. & Bai) ◮ Use combination of modal superposition (recycle Ritz vectors) with block Krylov for SV k 3 10 2 10 1 10 | y | 0 10 −1 10 −2 10 (KU Leuven) Research overview May 6, 2015 3 / 20 | y | | y | | y |

  6. Dominant poles for nonlinear frequency dependent models SISO Nonlinear system A ( s ) x = fu ( s ) d T x y = For many problems, y can be developed in a modal expansion ∞ R j � y = s − λ j j =1 where λ j is a root of det( A ( s )) = 0. Dominant pole algorithm makes a reduced model based on the dominant terms: k R j � y ≈ s − λ j j =1 Joint work with Maryam Saadvandi and Wim Desmet (Mechanical engineering): compute dominant poles for parametric systems (KU Leuven) Research overview May 6, 2015 4 / 20

  7. Dominant poles for parametric equations � � (1 + 0 . 02 i ) K 0 + ( k 1 + i ω c 1 ) K 1 − ω 2 M � = x f c ∗ x . y = −4 10 γ (1) # iterations time (min) γ (2) γ (3) γ (1) 8 0.45 −5 γ (4) 10 γ (2) 4 0.25 |H(i ω )| γ (3) 7 0.43 −6 10 γ (4) 3 0.19 Total 22 1.32 −7 10 0 5 10 15 20 25 30 i ω (rad/s) (KU Leuven) Research overview May 6, 2015 5 / 20

  8. Model order reduction (MOR) in optimization context Dynamical system: A ( ω, γ ) x = f d T x y = � ω max | y | 2 d ω = (energy) g ω min Objective: minimize g ( γ ) Model reduction using moment matching = Pad´ e approximation via Krylov methods Allows for cheap computation of g and ∇ γ g Penalty and trust region methods based on error estimation of reduced model (Yao Yue) (KU Leuven) Research overview May 6, 2015 6 / 20

  9. Example of the Lamot footbridge OPTEC Application Problem 4 Lamot bridge finite element model ( n = 25 , 962) The goal is to determine the optimal stiffness and damping coefficient of four bridge dampers (=8 parameters). Computation times: ◮ without reduced modeling: 545 for one function evaluation, 70 function evaluations needed. ◮ with reduced model to evaluate g and ∇ g : 879 sec. ◮ trust region method: 200 sec. ◮ penalty method: 189 sec. (KU Leuven) Research overview May 6, 2015 7 / 20

  10. Minimal maximal eigenvalue Parametric eigenvalue problem A ( x ) u = λ B ( x ) u with x ∈ H ⊂ R m λ 1 (x) 1.4 θ 1 (x) 1.2 1 l(x;v 1 ) 0.8 l(x;v 2 ) 0.6 0.4 0.2 0 −0.2 −15 −10 −5 0 5 10 15 20 A and B symmetric and B positive definite for x ∈ H Largest eigenvalue is a quasi convex function Our numerical method (Jeroen De Vlieger): ◮ subspace projection method (= bundle method) ◮ Solve the projected problem by any method for non-smooth problems or a method that approximates the solution by sequence of a 1D problems ◮ Provably convergent (KU Leuven) Research overview May 6, 2015 8 / 20

  11. Minimal maximal eigenvalue (KU Leuven) Research overview May 6, 2015 9 / 20

  12. Parametric eigenvalue problems for stability analysis Find parameter values p so that A ( p ) x = λ Bx has purely imaginary eigenvalues λ . Is translated to ( A ( p ) ⊗ B + B ⊗ A ( p )) z = 0 Exploit the specific Kronecker structure for efficient solvers Appears to be as efficient as solving eigenvalues of A ( p ) for fixed p Much more efficient than continuation Work with Spence, Elman, Voss, Schroeder, Vandebril (KU Leuven) Research overview May 6, 2015 10 / 20

  13. Nonlinear eigenvalue problems Nonlinear eigenvalues problems arise in many applications: A ( λ ) x = 0 Classical iteration schemes converge to one eigenvalue at a time Approximate A ( λ ) ≃ A 0 + λ A 1 + λ 2 A 2 + · · · Apply Arnoldi’s method to the Companion linearization: several eigenvalues converge at the same time With Michiels, Jarlebring, Van Beeumen 10 exact eigenvalues 0 10 Reciprocal Ritz values 5 | λ − λ * | imag 0 −10 10 −5 −20 10 (KU Leuven) Research overview −10 May 6, 2015 11 / 20 0 20 40 60 80 100 −6 −4 −2 0

  14. Nonlinear eigenvalue problems Rational Krylov method: pole can change Approximate A ( λ ) by Newton interpolation in σ 1 , . . . , σ k A ( λ ) ≃ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A k n k ( λ ) j � n j = ( λ − σ i ) i =1 Rational Krylov method with starting vector v corresponds to moment matching: A ( σ 1 ) − 1 v , A ( σ 2 ) − 1 v , . . . , A ( σ k ) − 1 v are contained in the subspace. (KU Leuven) Research overview May 6, 2015 12 / 20

  15. Nonlinear eigenvalue problems Gun problem: � � � � λ − σ 2 λ − σ 2 F ( λ ) x = 0 = K − λ M + i 1 W 1 + i 2 W 2 x Compute eigenvalues near 5 poles. (KU Leuven) Research overview May 6, 2015 13 / 20

  16. Incomplete multifrontal factorization Large sparse linear system Ax = b where A is given in finite element format: � P e A e P T A = e e ∈E ◮ A e is dense (full) matrix ◮ P e selects degrees of freedom associated with the element Multilevel preconditioning using element structure instead of sparse. D k ≡ diag( � , � , � , � ) D k ≡ � � , � , � , � � IMF (Nick Van Nieuwenhoven) (KU Leuven) Research overview May 6, 2015 14 / 20

  17. Incomplete multifrontal factorization Advantages ◮ Use dense matrices: high throughput ◮ More efficient preconditioner than other multilevel techniques 2D Navier-Stokes equation, flow around obstacle, Reynolds number 4000, 16 128 elems (Q1-Q1), 49 440 unknowns, 1 243 530 nnzs. ILUT(0.6) 10 +02 ILU(5) 10 +01 ARMS(0.1) Norm of residual 10 +00 IMF(2) IMF(4) 10 − 01 10 − 02 10 − 03 10 − 04 10 − 05 10 − 06 0 20 40 60 80 100 120 140 160 Execution time (s) (KU Leuven) Research overview May 6, 2015 15 / 20

  18. Sequentially truncated HOSVD A ≈ ( ˆ U 1 , ˆ U 2 , ˆ U 3 ) · ˆ S ˆ U 3 ˆ ˆ ≈ ˆ U 1 S U 2 A Rank ( r 1 , r 2 , r 3 ) orthogonal Tucker approximation to A ˆ  U 1 ∈ R n 1 × r 1  R n 1     ˆ Columns of U 2 ∈ R n 2 × r 2 can be extended to a basis of R n 2  ˆ  U 3 ∈ R n 3 × r 3 R n 3   (KU Leuven) Research overview May 6, 2015 16 / 20

  19. Compression of simulation results I Results for Nick Vannieuwenhoven’s ST-HOSVD. Compression of numerical solution of the heat equation on a square domain computed by explicit Euler. Tensor of size 101 × 101 × 10001 ( x × y × t ). Partially symmetric, 102 . 0 million non-zeros. T-HOSVD and ST-HOSVD truncated to absolute error of 10 − 4 . (KU Leuven) Research overview May 6, 2015 17 / 20

  20. Compression of simulation results II T-HOSVD ST-HOSVD 8 . 512 · 10 − 5 9 . 587 · 10 − 5 Abs. error Rank (22 , 22 , 20) (22 , 21 , 19) T-HOSVD ST-HOSVD Storage (nb. of values) 214144 203140 Factorization time 2h 46m 1m 14.7s 133x speedup! (KU Leuven) Research overview May 6, 2015 18 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend