invariant subspace computation in scientific computing
play

Invariant Subspace Computation in Scientific Computing: Gramian - PowerPoint PPT Presentation

Invariant Subspace Computation in Scientific Computing: Gramian Based Model Order Reduction RANMEP 2008 D.C. Sorensen M. Heinkenschloss, A.C. Antoulas , M. Shah and K. Sun Support: NSF and AFOSR NCTS Taiwan, Jan 2008 SVD Type


  1. Invariant Subspace Computation in Scientific Computing: Gramian Based Model Order Reduction RANMEP 2008 D.C. Sorensen ◮ M. Heinkenschloss, A.C. Antoulas , M. Shah and K. Sun ◮ Support: NSF and AFOSR NCTS Taiwan, Jan 2008

  2. SVD Type Projection Methods for MOR Brief Intro to SVD in Model Reduction Balanced Reduction Gramian Based Model Reduction: Symmetry Preserving SVD: Symmetric Data Solving Large Lyapunov Equations: Approximate Balancing 1M vars now possible Balanced Reduction of Oseen Eqns: Extension to Descriptor System Couple Linear with Domain Decomposition: Nonlinear Domains Local Reduction ⇒ Many Interactions Neural Modeling:

  3. Example: VLSI circuits 1960’s: IC 1971: Intel 4004 2001: Intel Pentium IV 10 µ details 0.18 µ details 2300 components 42M components 64KHz speed 2GHz speed 2km interconnect 7 layers D.C. Sorensen 3

  4. Gramian Based Model Reduction Proper Orthogonal Decomposition (POD) Principal Component Analysis (PCA) x ( t ) = f ( x ( t ) , u ( t )) , ˙ y = g ( x ( t ) , u ( t )) The Gramian � ∞ x ( τ ) x ( τ ) T d τ P = o Eigenvectors of P P = VS 2 V T Orthogonal Basis x ( t ) = VSw ( t ) D.C. Sorensen 4

  5. PCA or POD Reduced Basis Low Rank Approximation x ≈ V k ˆ x k ( t ) Galerkin condition – Global Basis ˙ x k = V T ˆ k f ( V k ˆ x k ( t ) , u ( t )) Global Approximation Error ( H 2 bound for LTI) � x − V k ˆ x k � 2 ≈ σ k +1 Snapshot Approximation to P m � P ≈ 1 x ( t j ) x ( t j ) T = XX T m j =1 Truncate SVD : X = VSU T ≈ V k S k U T k

  6. Image Compression - Feature Detection original rank = 10 rank = 30 rank = 50

  7. POD in CFD Extensive Literature Karhunen-Lo´ eve, L. Sirovich Burns, King Kunisch and Volkwein Gunzburger Many, many others Incorporating Observations – Balancing Lall, Marsden and Glavaski K. Willcox and J. Peraire D.C. Sorensen 7

  8. Symmetry Preserving SVD M. Shah Backbone representation of HIV-1 protease (from M. Moll) Rotational symmetry should be present ◮ Get matrix representation of symmetry group generators Now possible for all interesting symmetries (Weyl 7 inf. series) ◮ Determine best axis (axes) of symmetry ◮ Compute best (low rank) symmetric approximation (SPSVD) Iteratively using ARPACK

  9. The Symmetric SVD Approximation If WX 2 = X 1 + E where W = blockdiag ( I − 2 ww T ) � � X 1 � � ˆ �� � ˆ � 2 � � X 1 X 1 � � = USV T min − and � � ˆ ˆ X 2 X 2 X 2 W ˆ X 2 =ˆ X 1 F Solved by: � U 1 � √ 1 √ U = , S = 2 S 1 , V = V 1 . and U 2 = WU 1 , U 2 2 with 1 = 1 U 1 S 1 V T 2 ( X 1 + WX 2 ) D.C. Sorensen 9

  10. SPSVD - 2Fold Dihedral Symmetry Figure: Different approximations of 1IDS (6K atoms, rank 6 approx.)

  11. LTI Model Reduction by Projection ˙ x = Ax + Bu = y Cx Approximate x ∈ S V = Range ( V ) k -diml. subspace i.e. Put x = V ˆ x , and then force W T [ V ˙ ˆ − ( AV ˆ x + Bu )] = 0 x ˆ y = CV ˆ x If W T V = I k , then the k dimensional reduced model is ˙ ˆ x + ˆ ˆ x = A ˆ Bu ˆ ˆ = C ˆ y x where ˆ A = W T AV , ˆ B = W T B , ˆ C = CV .

  12. POD for LTI systems H ( t ) = C ( t I − A ) − 1 B , Impulse Response: t ≥ 0 x ( t ) = e A t B Input to State Map: Controllability Gramian: � ∞ � ∞ e A τ BB T e A T τ d τ x ( τ ) x ( τ ) T d τ = P = o o y ( t ) = C e A t x (0) State to Output Map: Observability Gramian: � ∞ e A T τ C T C e A τ d τ Q = o D.C. Sorensen 12

  13. Balanced Reduction (Moore 81) Lyapunov Equations for system Gramians A P + P A T + BB T = 0 A T Q + Q A + C T C = 0 With P = Q = S : Want Gramians Diagonal and Equal States Difficult to Reach are also Difficult to Observe Reduced Model A k = W T k AV k , B k = W T k B , C k = C k V k ◮ P V k = W k S k Q W k = V k S k ◮ Reduced Model Gramians P k = S k and Q k = S k . D.C. Sorensen 13

  14. Hankel Norm Error estimate (Glover 84) Why Balanced Truncation? � ◮ Hankel singular values = λ ( PQ ) ◮ Model reduction H ∞ error (Glover) � y − ˆ y � 2 ≤ 2 × ( sum neglected singular values ) � u � 2 ◮ Extends to MIMO ◮ Preserves Stability Key Challenge ◮ Approximately solve large scale Lyapunov Equations in Low Rank Factored Form D.C. Sorensen 14

  15. CD Player Frequency Response Freq − Response CD − Player : τ = 0.001, n = 120 , k = 12 2 10 Original Reduced 0 10 − 2 10 |G(j ω )| − 4 10 − 6 10 − 8 10 − 10 10 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 Frequency ω

  16. CD Player Frequency Response Freq − Response CD − Player : τ = 1e − 005, n = 120 , k = 37 2 10 Original Reduced 0 10 − 2 10 |G(j ω )| − 4 10 − 6 10 − 8 10 − 10 10 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 Frequency ω

  17. � CD Player - Hankel Singular Values λ ( PQ ) Hankel Singular Values 2 10 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 0 20 40 60 80 100 120

  18. Approximate Balancing A P + P A T + BB T = 0 A T Q + Q A + C T C = 0 • Sparse Case: Iteratively Solve in Low Rank Factored Form, P ≈ U k U T Q ≈ L k L T k , k [ X , S , Y ] = svd ( U T k L k ) W k = LY k S − 1 / 2 and V k = UX k S − 1 / 2 . k k Now: P W k ≈ V k S k and Q V k ≈ W k S k D.C. Sorensen 18

  19. Low Rank Smith = ADI Convert to Stein Equation: A P + P A T + BB T = 0 P = A µ P A T µ + B µ B T ⇐ ⇒ µ , where � A µ = ( A − µ I )( A + µ I ) − 1 , 2 | µ | ( A + µ I ) − 1 B . B µ = Solution: ∞ � µ ) T = LL T , A j µ B µ B T µ ( A j P = j =0 where L = [ B µ , A µ B µ , A 2 µ B µ , . . . ] Factored Form D.C. Sorensen 19

  20. Multi-Shift (Modified) Low Rank Smith LR - Smith: Update Factored Form P m = L m L T m : ( Penzl , Li , White ) L m +1 = [ A µ L m , B µ ] [ A m +1 = B µ , L m ] µ Multi-Shift LR - Smith: (Gugercin, Antoulas, and S.) Update and Truncate SVD Re-Order and Aggregate Shift Applications Much Faster and Far Less Storage B ← A µ B ; [ V , S , Q ] = svd ([ A µ B , L m ]); L m +1 ← V k S k ; ( σ k +1 < tol · σ 1 ) D.C. Sorensen 20

  21. Approximate Power Method (Hodel) T U + BB T U = 0 A P U + P A T ) A T A T U + BB T U + P ( I − UU T U = 0 A P U + P UU Thus T + BB T U ≈ 0 where H = U T AU A P U + P UH Solving T + BB T U = 0 AZ + ZH gives approximation to Z ≈ P U Iterate ⇒ Approximate Power Method Z j → US with P U = US (also see Vasilyev and White 05)

  22. T ) A Parameter Free Synthesis ( P ≈ US 2 U Step 1: Solve the reduced order Lyapunov equation P H T + ˆ B T = 0 . H ˆ P + ˆ B ˆ Solve ˆ with H = U k T AU k , B = U k T B . Step 2: (APM step) Solve a projected Sylvester equation AZ + ZH T + B ˆ B T = 0 , Step 3: Modify B B ← ( I − Z ˆ P − 1 U T ) B . Update Step 4: (ADI step) Update factorization and basis U k Z ← Z ˆ P − 1 / 2 . Re-scale Update (and truncate) [ U , S ] ← svd [ US , Z ] . U k ← U (: , 1 : k ), basis for dominant subspace. D.C. Sorensen 22

  23. Automatic Shift Selection - Placement? SUPG discretization advection-diffusion operator on square grid k = 32, m = 59 , n = 32*32, Thanks Embree Comparison Eigenvalues A vs H 0.03 0.02 0.01 0 −0.01 −0.02 −0.03 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 eigenvalues A eigenvalues small H eigenvalues full H

  24. Convergence History , Supg, n = 32, N = 1024 Laptop �P + −P� � ˆ Iter � B j � B j � �P + � 1 2.7e-1 1.6e+0 4.7e+0 2 7.2e-2 1.6e-1 1.5e+0 3 6.6e-3 1.1e-2 1.3e-1 4 3.7e-4 3.5e-7 1.3e-2 5 9.3e-9 1.4e-11 3.4e-7 P f is rank k = 59 Comptime( P f ) = 16.2 secs �P−P f � = 8 . 8 e − 9 Comptime( P ) = 810 secs �P� D.C. Sorensen 24

  25. Convergence History , Supg, n = 800, N = 640,000 CaamPC �P + −P� � ˆ Iter � B j � B j � �P + � 6 1.3e-01 2.5e+00 2.4e+00 7 7.5e-02 1.1e+00 1.2e+00 8 3.5e-02 6.74e-01 5.0e-01 9 2.0e-02 1.2e-02 6.7e-01 10 2.0e-04 7.1e-07 1.2e-02 11 1.0e-08 2.3e-11 6.4e-07 P f is rank k = 120 Comptime( P f ) = 157 mins = 2.6 hrs D.C. Sorensen 25

  26. Oseen Equations: A Descriptor System d dt v ( t ) = A 11 v ( t ) + A 12 p ( t ) + B 1 g ( t ) , E 11 A T 0 = 12 v ( t ) , v (0) = v 0 , y ( t ) = C 1 v ( t ) + C 2 p ( t ) + Dg ( t ) . E d dt v ( t ) = A v ( t ) + B u ( t ) , y ( t ) = C v ( t ) + D u ( t ) Note E is singular index 2 See Stykel (LAA 06) – general theory and approach

  27. Notation Put � � � � E = ΠE 11 Π T , A = ΠA 11 Π T , C = CΠ T . B = ΠB 1 , With this notation, A T + � A P � � E + � E P � B � B T = 0 , A T Q � C T � � E + � E Q � A + � C = 0 . where 12 E − 1 11 A 12 ) − 1 A T 12 E − 1 I − A 12 ( A T Π = 11 Θ l Θ T = r Π T Projector onto Null( A T 12 )

  28. ADI Derivation Step 1 Begin with � � T �� � B T � A T + � � � µ � � µ � P � B � AP E + ¯ A = − E − ¯ A . and derive � � � � T � � � � T � E + µ � � µ � � µ � E − µ � � − 2 Re( µ ) � B � B T . A P E + ¯ A = E − ¯ A P A � � E + µ � � Problem: A is Singular

  29. Key Pseudo-Inverse Lemma Suppose Θ T r E 11 Θ r + µ Θ T r A 11 Θ r is invertible. Then the matrix � � I � � − 1 E + µ � � Θ T r E 11 Θ r + µ Θ T Θ T ≡ Θ r A r A 11 Θ r r satisfies � � I � � � E + µ � E + µ � � = Π T A A and � � � � I � E + µ � E + µ � � A A = Π .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend