intuitionistic proofs without syntax
play

Intuitionistic Proofs Without Syntax Willem Heijltjes, Dominic - PowerPoint PPT Presentation

Intuitionistic Proofs Without Syntax Willem Heijltjes, Dominic Hughes, and Lutz Straburger Bath, 26 February 2019 (Classical) Combinatorial Proofs nicely coloured cograph skew fibration a a a cograph b (( a b ) a ) a b )


  1. Intuitionistic Proofs Without Syntax Willem Heijltjes, Dominic Hughes, and Lutz Straßburger Bath, 26 February 2019

  2. (Classical) Combinatorial Proofs nicely coloured cograph skew fibration a a a cograph b (( a ⇒ b ) ⇒ a ) ⇒ a ∨ b ) ∧ a ) ∨ a (( a Question: What is the intuitionistic counterpart? But first: What is a combinatorial proof? [Hughes 2006]

  3. ... the flow of a stratified deep-inference proof ⊤ ⊤ a a ∧ a ∨ a a ∨ a s ( a ∨ a ) ∧ a ∨ a s ∼ ( a ∧ a ) ∨ a a a a � a � b ∨ a ∨ a c ∧ a w a a ∨ b ∨ b ) ∧ a ) ∨ a (( a nicely coloured cograph axiom–switch derivation ∼ ( A ∨ B ) ∧ C ) ⊤ a s a ∨ a A ∨ ( B ∧ C ) skew fibration contraction–weakening derivation ∼ A ∨ A c A w A ∨ B A [Guglielmi et al. 1999–present]

  4. ... an MLL proof net + ALL proof net ( a ⊗ a ) a a & & ( a & a ) ⊕ a ⊕ a ∼ a a a b (( a ⊕ b ) & a ) ⊕ a ∨ b ) ∧ a ) ∨ a (( a ∨ b ) ∧ a ) ∨ a (( a nicely coloured cograph MLL proof net ∼ skew fibration functional ALL proof net ∼ a A ⊕ B A A A A & B · ·· · = | | | | a B ⊕ C B C B & C C [Girard 1987, Retoré 2003, Hughes & Van Glabbeek 2005]

  5. Classical combinatorial proofs § Purely geometric § Possibly canonical § Complexity conscious (efficient (de-)sequentialization) § Quite nice Question: What is the intuitionistic counterpart?

  6. Intuitionistic Combinatorial Proofs

  7. Arena net Skew fibration b a a b Arena b (( a ⇒ a ) ⇒ b ) ⇒ ( b ∧ b )

  8. Part 1: From formulas to arenas

  9. a a b c c b a ⇒ b ⇒ c ( a ⇒ b ) ⇒ c ( a ∧ b ) ⇒ c b c a a b c a ( a ⇒ b ⇒ c ) ⇒ ( a ⇒ b ) ⇒ a ⇒ c ((( a ∧ b ) ⇒ c ) ∧ ( a ⇒ b ) ∧ a ) ⇒ c

  10. b a b a a c c a ⇒ ( b ∧ c ) a ⇒ ( b ∧ c ) ( a ⇒ b ) ∧ ( a ⇒ c ) a b c d e f g h ((( a ⇒ b ) ⇒ c ) ∧ e ) ⇒ ( d ∧ (( f ⇒ g ) ⇒ h )) See also [McCusker 2000]

  11. Arenas, inductively · G G � a � = • a · (a node labelled a ) · � A ∧ B � = � A � + � B � H H � A ⇒ B � = � A � ⊲ � B � G + H G ⊲ H G + H : union (assuming distinct sets of vertices) G ⊲ H : union, and connect all roots of G to all roots of H

  12. Arenas, geometrically L-free: if c a b d then c d b a d c ( a ⇒ ( b ∧ c )) ⇒ d b b a d a d c c ( a ⇒ b ) ⇒ d a ⇒ ( b ∧ c )

  13. Arenas, geometrically Σ -free: if c a d b e then a e or b c a c a c d d or b e b e a ⇒ ( c ∧ ( b ⇒ ( d ∧ e ))) b ⇒ (( a ⇒ ( c ∧ d )) ∧ e ) a c a c d d b e b e a ⇒ ( c ∧ d ) b ⇒ ( d ∧ e )

  14. Arenas, geometrically a c a c b L-free: a d Σ -free: d d or c b e b e Example: Non-example: a b c d a b c d e e f g h f g h

  15. Theorem A directed acyclic graph (DAG) represents a formula � A � if and only if it is L-free and Σ -free. Theorem � A � = � B � if and only if A ∼ B by the isomorphisms ( A ∧ B ) ⇒ C ∼ A ⇒ B ⇒ C A ∧ B ∼ B ∧ A ( A ∧ B ) ∧ C ∼ A ∧ ( B ∧ C ) . Represent “labelled with the same atom” abstractly by a partitioning : Definition An arena is an L-free, Σ -free DAG with a partitioning of its vertices.

  16. Example: S-combinator b b c c a a a b c b c a a (( a ⇒ b ⇒ c ) ∧ ( a ⇒ b )) ⇒ a ⇒ c ( a ⇒ (( b ⇒ c ) ∧ b )) ⇒ a ⇒ c

  17. Part 2: From IMLL proof nets to arena nets

  18. IMLL Formulas · = a | A ⊗ B | A B A · ·· Sequent calculus: Γ , A , B ⊢ C Γ , A ⊢ B Γ ⊢ A B , ∆ ⊢ C Γ ⊢ A ∆ ⊢ B Γ , ∆ ⊢ A ⊗ B Γ , A ⊗ B ⊢ C Γ ⊢ A B Γ , A B , ∆ ⊢ C a ⊢ a

  19. IMLL proof nets a ⊢ a c ⊢ c d ⊢ d a a c d ⊢ a a b ⊢ b c , c d ⊢ d b d ( a a ) b ⊢ b c ⊢ ( c d ) d c b ( a a ) b , c ⊢ b ⊗ (( c d ) d ) (( a a ) b ) ⊗ c ⊢ b ⊗ (( c d ) d ) ⊗ ⊗ ⊢ ((( a a ) b ) ⊗ c ) ( b ⊗ (( c d ) d ))

  20. Paths & Polarity even ◦ odd • A • B ◦ A ◦ B ◦ A ◦ B • A • B • ⊗ ⊗ In natural deduction style: x A . . . . A ⊗ B B A B A B A I , x ⊗ I E ⊗ E A ⊗ B A B B A B Correctness: (The essential net condition) In A • B ◦ every path from A to the root must pass B . [Lamarche 2008]

  21. IMLL proof nets a • a ◦ c ◦ d • b • d ◦ c • b ◦ ⊗ ⊗ A • B ◦ Correctness: in every path from A to the root must pass B .

  22. Paths in arenas ((( a • a ◦ ) b • ) ⊗ c • ) ( b ◦ ⊗ (( c ◦ d • ) d ◦ )) a • a ◦ c ◦ d • a • a ◦ b • b ◦ b • d ◦ c • b ◦ c • ⊗ ⊗ c ◦ d • d ◦ Lemma ∗ y • correspond to arena-edges x ◦ Formula-paths x ◦ y • . ∗ y • correspond to arena-edges y • Formula-paths x ◦ ∗ x ◦ .

  23. An arena is linked if each partition is binary and dual { x • , x ◦ } (a link ) y • and links x • The link graph of an arena are the even edges x ◦ x ◦ a • a ◦ c ◦ d • a • a ◦ b • b ◦ b • d ◦ c • c • b ◦ ⊗ ⊗ c ◦ d • d ◦ A linked arena is correct if: (Acyclicity) the link graph is acyclic, and ∗ r ◦ passes some b ◦ with a • (Functionality) a rooted link path a • b ◦ . Theorem A linked arena is correct if and only if it represents an IMLL proof net. Definition An arena net is a correct linked arena.

  24. Part 3: Skew fibrations

  25. Contraction-weakening derivations in open deduction: A � � A C B C � � � � � � � � � A A w a B c � � � � ∧ ⇒ � A ∧ A 1 � B D A D � C But: classically contract/weaken only on disjunction — odd conjunction

  26. A � � A A C B C � � � � � � � � � � � ·· · a | | | B � · = � � � � ∧ ⇒ � � B B D A D � C C � � B B D A D � � � � � � A ∧ A c � � � � � 1 w a ·· · B · = | | | | | � � ∧ � � ⇒ � � A A � A A C B C � A

  27. Arenas � A � give associativity, symmetry, and units for free: A ∧ ( B ∧ C ) A ∧ B A ∧ 1 ( A ∧ B ) ∧ C B ∧ A A Then vertical composition is only used with contraction: B C � � B C � � � � � � ∧ � � � ∧ � A A = A A c A ∧ A c A A

  28. A A C B C � � � � � � � � � � · ·· a � · = | � � | � � ∧ ⇒ B B D A D B C � � B B D A D � � � � � � � 1 w � � � � � � � ∧ a ·· · · = | | | | � � ∧ � � ⇒ � A A A c A A C B C A

  29. Skew fibrations, inductively � A � + � C � � B � ⊲ � C � g Even f , g : f f k � B � + � D � � A � ⊲ � D � f + g k ⊲ f 1 � B � + � D � � A � ⊲ � D � � B � + � C � ∅ j f j Odd j , k : k k k � A � + � C � � B � ⊲ � C � � A � � A � k + j f ⊲ k [ k , j ] 1 ∅ � A �

  30. Skew fibrations, geometrically § Preserve edges (and roots): § Preserve axiom links/partitioning (but not labels!): a a b b p p p

  31. Skew fibrations, geometrically Contract on odd ( • ) but not even ( ◦ ) nodes — and their subgraphs Two vertices x � = y are conjunctively related x � y if they meet at even depth (or not at all): n z m z ◦ x � y : if x y for minimal n , m then § Preserve conjunctive relations

  32. Skew fibrations, geometrically The skew lifting property: a b a � = ⇒ w � u w � � v u �   a a b � � � 1 �  1 � �  ∧ � = ⇒ � ∧ ⇒ � w w u u v

  33. Theorem A graph homomorphism is “(even) inductive” if and only if it preserves edges, roots, partitioning, and conjunctive relations, and satisfies skew lifting . Definition A skew fibration is a graph homomorphism that preserves edges, roots, pertitioning, and conjunctive relations, and satisfies skew lifting . Definition An intuitionistic combinatorial proof of a formula A is a skew fibration f : A → � A � from an arena net A to the arena of A .

  34. Arena net Skew fibration b a a b Arena b (( a ⇒ a ) ⇒ b ) ⇒ ( b ∧ b )

  35. Intuitionistic combinatorial proofs § Purely geometric § Locally canonical (factor out non-duplicating permutations) § Polynomial full completeness (efficient (de-)sequentialization) § Quite nice

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend