introduction outline geometry of t t intrinsic torsion
play

Introduction Outline Geometry of T T Intrinsic - PowerPoint PPT Presentation

ArXiv:1203.0493 Gil Cavalcanti Utrecht University Poisson Geometry in Mathematics and Physics Utrecht 2012 Introduction Outline Geometry of T T Intrinsic torsion Hodge theory Deformations


  1. ArXiv:1203.0493 Gil Cavalcanti Utrecht University Poisson Geometry in Mathematics and Physics Utrecht 2012 ��� ��������

  2. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Introduction — SKT structures K¨ ahler structure with torsion : Hermitian structure ( g , I ) with a connection ∇ with Tor ( ∇ ) = H ∈ Ω 3 ( M ) such that ∇ g = ∇ I = 0 . K¨ ahler structure with strong torsion (SKT): dH = 0. SKT structure: Hermitian structure ( g , I ) such that dd c ω = 0 . H = d c ω . SKT geometry Cavalcanti

  3. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Examples K¨ ahler manifolds ; Compact even dimensional Lie groups ; Compact complex surfaces (Gauduchon); Instanton moduli space over compact complex surfaces; Instanton moduli space over Hermitian manifolds with Gauduchon metrics; Classification on 6-nilmanifolds ; SKT geometry Cavalcanti

  4. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations K¨ ahler vs. SKT K¨ ahler SKT Decomposition of cohomology � Hodge theory � Fr¨ olicher spectral seq. degenerates � Formality � Unobstructed deformations � Fino, Parton and Salamon. Families of strong KT structures in six dimensions. Comment. Math. Helv. 2004. (arXiv:math/0209259) SKT geometry Cavalcanti

  5. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations K¨ ahler vs. SKT K¨ ahler SKT ✪ Decomposition of cohomology � ✪ Hodge theory � ✪ Fr¨ olicher spectral seq. degenerates � ✪ Formality � ✪ Unobstructed deformations � Fino, Parton and Salamon. Families of strong KT structures in six dimensions. Comment. Math. Helv. 2004. (arXiv:math/0209259) SKT geometry Cavalcanti

  6. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations K¨ ahler vs. SKT K¨ ahler SKT ✪ Decomposition of cohomology � ✪ Hodge theory � ✪ Fr¨ olicher spectral seq. degenerates � ✪ Formality � ✪ ✪ Unobstructed deformations Fino, Parton and Salamon. Families of strong KT structures in six dimensions. Comment. Math. Helv. 2004. (arXiv:math/0209259) SKT geometry Cavalcanti

  7. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations K¨ ahler vs. SKT K¨ ahler SKT Decomposition of cohomology � � Hodge theory � � Fr¨ olicher spectral seq. degenerates � � ✪ Formality � ✪ ✪ Unobstructed deformations SKT geometry Cavalcanti

  8. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations K¨ ahler vs. GK vs. SKT K¨ ahler GK SKT Decomposition of cohomology � � � Hodge theory � � � Fr¨ olicher spectral seq. degenerates � � � ✪ ✪ Formality � ✪ ✪ ✪ Unobstructed deformations SKT geometry Cavalcanti

  9. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Main insights SKT structures are also generalized structures ` a la Hitchin. Description of intrinsic torsion of generalized almost Hermitian structures. SKT geometry Cavalcanti

  10. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Outline of Topics Geometry of T ⊕ T ∗ 1 Nijenhuis tensor and intrinsic torsion 2 Hodge theory 3 Deformations 4 SKT geometry Cavalcanti

  11. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Natural pairing Natural pairing � X + ξ, Y + η � = 1 2 ( η ( X ) + ξ ( Y )) . Action of T ⊕ T ∗ on ∧ • T ∗ : ( X + ξ ) · ϕ = ι X ϕ + ξ ∧ ϕ. Extends to an action of Clif ( T ⊕ T ∗ ) on ∧ • T ∗ : v · ( v · ϕ ) = � v , v � ϕ. ∧ • T ∗ ❀ spinors. Spin invariant pairing: ( · , · ) Ch : ∧ • T ∗ ⊗ ∧ • T ∗ − → ∧ top T ∗ . SKT geometry Cavalcanti

  12. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Generalized metric A generalized metric is an orthogonal, self-adjoint bundle isomorphism: G : T ⊕ T ∗ − → T ⊕ T ∗ ; such that �G v , v � > 0 . G − 1 = G t = G G 2 = Id . ⇒ G is determined by its + 1-eigenspace V + . SKT geometry Cavalcanti

  13. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Generalized Hodge star Generalized metric + orientation ⇒ generalized Hodge star ⋆ ( ϕ, ⋆ϕ ) Ch > 0 . ⋆ 2 = ( − 1 ) m ( m − 1 ) . 2 m ( m − 1 ) SD forms = − i -eigenspace; 2 m ( m − 1 ) ASD forms = i -eigenspace; 2 SKT geometry Cavalcanti

  14. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Gen. almost complex structure Generalized almost complex structure: J : T ⊕ T ∗ − J 2 = − Id ; → T ⊕ T ∗ ; J is orthogonal. J ⇔ L ⊂ ( T ⊕ T ∗ ) ⊗ C , maximal isotropic L ∩ L = { 0 } . J t = J − 1 = −J ⇒ J ∈ ∧ 2 ( T ⊕ T ∗ ) = spin ( T ⊕ T ∗ ) . J splits ∧ • T ∗ into its ik -eigenspaces: ∧ • T ∗ C M = ⊕ − n ≤ k ≤ n U k . SKT geometry Cavalcanti

  15. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Gen. almost Hermitian str. Generalized almost Hermitian structure: ( G , J 1 ) GJ 1 = J 1 G . J 2 = GJ 1 is a gcs and J 2 J 1 = J 1 J 2 . ( T ⊕ T ∗ ) ⊗ C = V 1 , 0 + ⊕ V 0 , 1 + ⊕ V 1 , 0 − ⊕ V 0 , 1 − . C M = ⊕ p , q U p J 1 ∩ U q ∧ • T ∗ J 2 . SKT geometry Cavalcanti

  16. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Gen. almost Hermitian str. U 0 , 3 U − 1 , 2 U 1 , 2 U − 2 , 1 U 0 , 1 U 2 , 1 U − 3 , 0 U − 1 , 0 U 1 , 0 U 3 , 0 U − 2 , − 1 U 0 , − 1 U 2 , − 1 U − 1 , − 2 U 1 , − 2 U 0 , − 3 Spaces U p , q on a 6-dimensional generalized almost Hermitian structure. SKT geometry Cavalcanti

  17. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Gen. almost Hermitian str. Generalized almost Hermitian structure: ( G , J 1 ) GJ 1 = J 1 G . J 2 = GJ 1 is a gcs and J 2 J 1 = J 1 J 2 . ( T ⊕ T ∗ ) ⊗ C = V 1 , 0 + ⊕ V 0 , 1 + ⊕ V 1 , 0 − ⊕ V 0 , 1 − . C M = ⊕ p , q U p J 1 ∩ U q ∧ • T ∗ J 2 . π J 1 π J 2 ⋆ = − e 2 e 2 ⋆ | U p , q = − i p + q . SKT geometry Cavalcanti

  18. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Gen. almost Hermitian str. U 0 , 3 U − 1 , 2 U 1 , 2 U − 2 , 1 U 0 , 1 U 2 , 1 U − 3 , 0 U − 1 , 0 U 1 , 0 U 3 , 0 U − 2 , − 1 U 0 , − 1 U 2 , − 1 U − 1 , − 2 U 1 , − 2 U 0 , − 3 SD and ASD forms on a 6-dimensional generalized almost Hermitian structure. SKT geometry Cavalcanti

  19. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Gen. almost Hermitian str. U 0 , 3 U − 1 , 2 U 1 , 2 U − 2 , 1 U 0 , 1 U 2 , 1 U − 3 , 0 U − 1 , 0 U 1 , 0 U 3 , 0 U − 2 , − 1 U 0 , − 1 U 2 , − 1 U − 1 , − 2 U 1 , − 2 U 0 , − 3 SD and ASD forms on a 6-dimensional generalized almost Hermitian structure. SKT geometry Cavalcanti

  20. Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Geometry of T ⊕ T ∗ — Courant bracket Courant bracket [ [ X + ξ, Y + η ] ] H = [ X , Y ] + L X η − ι Y d ξ − ι Y ι X H . ] H · ϕ = {{ v 1 , d H } , v 2 } · ϕ. [ [ v 1 , v 2 ] SKT geometry Cavalcanti

  21. � � � Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Nijenhuis tensor and intrinsic torsion Given a gacs J , define → Ω 0 ( M ; C ) N : Γ( L ) × Γ( L ) × Γ( L ) − N ( v 1 , v 2 , v 3 ) = − 2 � [ [ v 1 , v 2 ] ] , v 3 � . J is integrable iff N ≡ 0 . N ∈ Γ( ∧ 3 L ) . N ∂ J 1 � U k − 3 U k − 2 U k − 1 U k U k + 1 U k + 2 U k + 3 N ∂ J 1 SKT geometry Cavalcanti

  22. � � � � � � � � � � � � � � Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Nijenhuis tensor and intrinsic torsion U p − 3 , q + 3 U p − 1 , q + 3 U p + 1 , q + 3 U p + 3 , q + 3 N − N + N 1 N 2 U p − 3 , q + 1 U p − 1 , q + 1 U p + 1 , q + 1 U p + 3 , q + 1 δ − δ + N 3 N 4 U p , q N 3 N 4 � δ − � δ + U p − 3 , q − 1 U p − 1 , q − 1 U p + 1 , q − 1 U p + 3 , q − 1 N 2 N 1 N − N + U p − 3 , q − 3 U p − 1 , q − 3 U p + 1 , q − 3 U p + 3 , q − 3 Components of d H for a generalized almost Hermitian structure. SKT geometry Cavalcanti

  23. � � � � � � � Introduction Outline Geometry of T ⊕ T ∗ Intrinsic torsion Hodge theory Deformations Nijenhuis tensor and intrinsic torsion U p − 1 , q + 3 U p + 1 , q + 3 N 1 N 2 U p − 1 , q + 1 U p + 1 , q + 1 δ − δ + U p , q δ − � δ + U p − 3 , q − 1 U p − 1 , q − 1 N 2 N 1 U p − 1 , q − 3 U p + 1 , q − 3 Components of d H for a generalized Hermitian structure. SKT geometry Cavalcanti

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend