introduction mathematical optimization
play

Introduction: Mathematical optimization Motivating Example - PowerPoint PPT Presentation

Introduction: Mathematical optimization Motivating Example Applications Least-squares(LS) and linear programming(LP) - Very common place Course goals and topics Nonlinear optimization Brief history of convex optimization Prof. G a n e s h


  1. Introduction: Mathematical optimization Motivating Example Applications Least-squares(LS) and linear programming(LP) - Very common place Course goals and topics Nonlinear optimization Brief history of convex optimization Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 1/ 42

  2. Almost Every Problem can be posed as an Optimization Problem G i v e n a s e t C ⊆ ℜ n find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat C⊆E . Hint: First work out the problem in lower dimensions x in C is a vector of size n C x = [x1,x2......xn] NEED A ROTATED+TRANSLATED VERSIO a2 Constraint: x1^2/a1^2 + x2^2/a2^2 a1 + ....xn^2/an^2 <= 1 Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 4 / 42

  3. Almost Every Problem can be posed as an Optimization Problem G i v e n a s e t C⊆ ℜ n find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat C⊆E . Hint: First work out the problem in lower dimensions Sphere S r ⊆ ℜ c e n t e r e d at 0 is e x p r e s s e da s : n Sr = { ||x||_2 <= r} 2-norm is the square root of sum of squares of the individual components of x Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 4 / 42

  4. Almost Every Problem can be posed as an Optimization Problem G i v e n a s e t C⊆ ℜ n find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat C⊆E . Hint: First work out the problem in lower dimensions Sphere S r ⊆ ℜ c e n t e r e d at 0 is e x p r e s s e d as: S r = { u ∈ ℜ n |∥ u ∥ 2 ≤ r } n Ellipsoid E⊆ ℜ n i s e x p r e s s e da s : Av + b A'u + b' Ellipsoid is a rotated, scaled and translated version of the sphere Our basic ellipsoid A' had A' = diagonal u mxn m n Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 4 / 42

  5. Almost Every Problem can be posed as an Optimization Problem G i v e n a s e t C⊆ ℜ n find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat C⊆E . Hint: First work out the problem in lower dimensions Sphere S r ⊆ ℜ c e n t e r e d at 0 is e x p r e s s e d as: S r = { u ∈ ℜ n |∥ u ∥ 2 ≤ r } n Ellipsoid E⊆ ℜ n i s e x p r e s s e da s : { } { } E = v ∈ ℜ | A v + b ∈ S = v ∈ ℜ |∥ A v + b ∥ ≤ 1 . Here, A ∈S , that is, A is n n n 1 2 ++ an n × n (strictly) p o s it iv e definitematrix. The optimization p r o b l e m willbe: 3)That is, A has positive eigen values.. 1) A is an nxn matrix 4) The positive eigenvalues will (Sphere and Ellipsoid are both correspond to scaling of the axis in R^n) and corresponding eigenvectors 2) This brings an additional to the new axes constraint that A is symmetic, 5) The volume is proportional tothe and it is positive de fi nite product of lengths of eigenvalues Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 4 / 42

  6. Almost Every Problem can be posed as an Optimization Problem G i v e n a s e t C⊆ ℜ n find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat C⊆E . Hint: First work out the problem in lower dimensions Sphere S r ⊆ ℜ c e n t e r e d at 0 is e x p r e s s e d as: S r = { u ∈ ℜ n |∥ u ∥ 2 ≤ r } n Ellipsoid E⊆ ℜ n i s e x p r e s s e da s : { } { } , that is, A is E = v ∈ ℜ | A v + b ∈S = v ∈ ℜ|∥ A v + b ∥ ≤ 1 . Here, A ∈S n n n 1 2 ++ an n × n (strictly) p o s it iv e definite matrix. The optimization p r o b l e m willbe: m in im i z e det ( A − 1 ) [ a 11 , a 12 .., a nn , b 1 ,.. b n ] A is positive de fi nite T A v > 0 , ∀ v ̸ = 0 s u b j e c tto v C ∥ A v + b ∥ 2 ≤ 1 , ∀ v ∈C C is contained in the Ellipsoid Can forall v be changed to checking for a fi nite n u m b e r o f b o u n n T d B a m r b y ) points n ? P r o . G f a n e s hR a m a k i s r h n a ( I I o a y I t r o d u c t i o n to C o n v e x Optimization : CS709 July 17,2018 4 / 42

  7. Almost Every Problem can be posed as an Optimization Problem (contd.) Give n a polygon P⊆ ℜ find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat n P ⊆ E . L e t v 1 , v 2 , ... v p b e t h e c o r n e r s of t h epolygon P The optimization p r o b l e m willbe: v1 m in im i z e det ( A − 1 ) v2 [ a 11 , a 12 .., a nn , b 1 ,.. b n ] s u b j e c tto − v T A v > 0 , ∀ v ̸ = 0 v3 ∥ A v + b ∥ 2 ≤ 1 , i ∈{ 1 .. p } v4 i v5 Given that the speci fi ed set S is indeed a polygon, is this problem with a simpli fi ed set of constraints equivalent to the original problem? Y E S P r o f . G a n e s hRamakrishnan (IIT Bombay) Introduction to C o n v e x Optimization: CS709 July 17, 2018 5 / 42

  8. Almost Every Problem can be posed as an Optimization Problem (contd.) G i v e n a polygon P⊆ ℜ n find t h e ellipsoid E⊆ ℜ n that i s of s m a l l e s t v o l u m e s u c hthat P⊆E . L e t v 1 , v 2 , ... v p b e t h e c o r n e r s of t h e polygon P The optimization p r o b l e m willbe: m in im i z e det ( A − 1 ) [ a 11 , a 12 .., a nn , b 1 ,.. b n ] s u b j e c tto − v T A v > 0 , ∀ v ̸ = 0 ∥ A v i + b ∥ 2 ≤ 1 , i ∈{ 1 .. p } H o w w o u l d y o u p o s e a n optimization p r o b l e m to find t h e ellipsoid E ′ of l a r g e s t v o l u m e that fitsi n s i d e C ? Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 5 / 42

  9. So Again: Mathematical optimization m i n i m i z e f 0 ( x ) x s u b j e c t to f i ( x ) ≤ b i , i = 1 , . . . , m . x = ( x 1 , ..., x n ) : optimizationv a r i a b l e s f i : ℜ n →ℜ , i = 1 , ..., m : c o n s t r a in tfu n c t io n s optimal solution x ∗ h a s s m a l l e s t v a l u e of f 0 a m o n g all v e c t o r s that s a t is fy t h ec o n s t r a i n t s Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 6 / 42

  10. Examples portfolio optimization v a r ia b le s : a m o u n t s i n v e s t e d in differenta s s e t s c o n s t r a in t s : budget, max./min. i n v e s t m e n t p e r a s s e t ,m i n i m u m return o b je c t iv e : o v e r a ll r is k o r returnv a r i a n c e Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 7 / 42

  11. Examples Data fitting - Machine learning v a r ia b le s : m o d e lp a r a m e t e r s c o n s t r a in t s : prior information, p a r a m e t e r limits o b je c t iv e : m e a s u r e of misfit o r p r e d ic t io ne r r o r Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 9 / 42

  12. Applications S p a m De t e c t io n Digit Re c o g n it io n M e d ic a ld i a g n o s i s Bio-diversity c l a s s i f i c a t i o n Buying o r s e llin gp r o d u c t s Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 12 / 42

  13. Problem in Perspective G i v e n d a t a points x i , i = 1 , 2 , . . . , m P o s s i b l e c l a s s c h o i c e s : c 1 , c 2 , . . . , c k Wish to g e n e r a t e amapping/classifier f : x → { c 1 , c 2 ,..., c k } T o g e t c l a s slabels y 1 , y 2 ,..., y m Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 13 / 42

  14. Problem in Perspective In g e n e r a l, s e r i e s ofm a p p i n g s x f ( · ) g ( · h ( · ) ) −→ y −→ z −→{ c , c , . . ., c } 1 2 k eg: neural networks Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 14 / 42

  15. Problem in Perspective In g e n e r a l, s e r i e s ofm a p p i n g s x f ( · ) g ( · h ( · ) ) −→ y −→ z −→{ c , c ,..., c } 1 2 k wh e re , z a r e in s o m e latents p a c e . y Prof. G a n e s h Ramakrishnan (IIT Bombay) Introduction to C o n v e x Optimization : CS709 July 17,2018 14 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend