interval avoidance in the symmetric group
play

Interval Avoidance in the Symmetric Group Isaiah Lankham UC Davis - PowerPoint PPT Presentation

Interval Avoidance in the Symmetric Group Isaiah Lankham UC Davis Fourth International Conference on Permutation Patterns Reykjav k University June 16, 2006 (joint work with Alexander Woo, UC Davis) Permutation Embeddings Interval


  1. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) } 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  2. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) } 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  3. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  4. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  5. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  6. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  7. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  8. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  9. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  10. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  11. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  12. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 3124 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  13. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 3124 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  14. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 3124 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  15. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 3124 ≻ 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  16. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 3124 ≻ 1324 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  17. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings The (Strong) Bruhat Order Definition (Inversion in σ ∈ S n ) An inversion is an embedding of the pattern 21 ∈ S 2 into σ . Definition (Length Function on S n ) ℓ ( σ ) = # { indices ( i 1 , i 2 ) | ( i 1 , i 2 ) is an inversion in σ } Example: ℓ ( 426153 ) = # { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 5 , 6 ) } Definition (Bruhat order on S n ) We say τ > σ in Bruhat order if τ can be transformed into σ by successively “undoing” inversions. Example. 3412 > 1324: 3412 ≻ 3142 ≻ 3124 ≻ 1324 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  18. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Bruhat Covering Relation Definition (Bruhat covering relation on S n ) We say σ ≺ τ in Bruhat order if σ = τ t for some transposition t ℓ ( σ ) = ℓ ( τ ) − 1 Equivalently: use transposition t to “undo” an embedding of 21 at positions i < k in τ such that ∄ index j for which i < j < k and τ i > τ j > τ k : ( i , τ i ) • • ( k , τ k ) 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  19. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Symmetry Properties of Bruhat Order Lemma (Bruhat order symmetries for σ, τ ∈ S n ) ⇒ σ − 1 < τ − 1 (Inverses) σ < τ = ⇒ τ r < σ r (Reverse) σ < τ = ⇒ τ c < σ c (Complement) σ < τ = ⇒ σ rc < τ rc (Reverse Complement) σ < τ = Examples: Starting with 1324 < 2341, 1324 − 1 = 1324 < 4123 = 2341 − 1 . 2341 r = 1432 < 4231 = 1324 r . 2341 c = 3214 < 4231 = 1324 c . 1324 rc = 1324 < 4123 = 2341 rc . 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  20. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Intervals in Bruhat Order Definition (Intervals in Bruhat order) Given σ, τ ∈ S n , [ σ, τ ] = { ω ∈ S n | σ ≤ ω ≤ τ } . 4321 Example. [ 1324 , 2341 ] : 4312 4231 3421 4132 4213 3412 2431 3241 4123 1432 2413 3142 2341 2341 3214 1423 1342 1342 2143 3124 2314 2314 1243 1324 1324 2134 1234 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  21. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  22. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  23. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  24. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  25. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 321 231 312 132 213 123 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  26. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 321 231 312 132 213 123 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  27. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 321 231 312 132 213 123 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  28. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. 4321 Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 4312 4231 3421 321 4132 4213 3412 2431 3241 231 312 4123 1432 2413 3142 2341 3214 132 213 1423 1342 2143 3124 2314 123 1243 1324 2134 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group 1234

  29. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Embeddings Intervals into Larger Intervals Definition (Interval Embedding) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, we say that [ π, ρ ] embeds into [ σ, τ ] if � π embeds into σ using same embedding ( i 1 , i 2 , . . . , i m ) ρ embeds into τ the intervals [ π, ρ ] and [ σ, τ ] are order-isomorphic. 4321 Example. [ 123 , 231 ] embeds into [ 1324 , 2341 ] : 4312 4231 3421 321 4132 4213 3412 2431 3241 231 312 4123 1432 2413 3142 2341 3214 132 213 1423 1342 2143 3124 2314 123 1243 1324 2134 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group 1234

  30. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings An Equivalent Definition of Interval Embeddings Lemma (Interval Embedding Characterization) Given π ≤ ρ ∈ S m and σ ≤ τ ∈ S n with m ≤ n, the interval [ π, ρ ] embeds into [ σ, τ ] iff σ i = τ i for i / ∈ { i 1 , i 2 , . . . , i m } (a common embedding) ℓ ( τ ) − ℓ ( σ ) = ℓ ( ρ ) − ℓ ( π ) Corollary Given any three of the permutations π , ρ , σ , and τ , the fourth is uniquely determine. Definition (Avoidance Set for an Interval) S n ([ π, ρ ]) = { τ ∈ S n | ∀ σ ∈ S n , [ π, ρ ] doesn’t embed into [ σ, τ ] } . 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  31. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Interval Embeddings & Avoidance Examples: If π = ρ , then S n ([ π, ρ ]) = S n ( ρ ) since the intervals [ π, ρ ] = { ρ } and [ σ, τ ] = { τ } are trivially order-isomorphic. 43512 “contains” [ 1324 , 3412 ] because the interval [ 1324 , 3412 ] embeds into [ 4 1325 , 4 3512 ] : ℓ ( 43512 ) − ℓ ( 41325 ) = 7 − 4 = 4 − 1 = ℓ ( 3412 ) − ℓ ( 1324 ) 426153 ∈ S n ([ 1324 , 3412 ]) because the interval [ 1324 , 3412 ] cannot embed into [ 1 2 43 5 6 , 4 2 61 5 3 ] : ℓ ( 426153 ) − ℓ ( 124356 ) = 8 − 1 > 4 − 1 = ℓ ( 3412 ) − ℓ ( 1324 ) “Universal” in characterizing singularities of Schubert varieties (A. Woo and A. Yong). 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  32. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. Connect point horizontally. Connect point vertically toward π . Shade between closest vertical “left-side down” and “right-side up” pairs of lines. 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  33. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. Connect point horizontally. Connect point vertically toward π . Shade between closest vertical “left-side down” and “right-side up” pairs of lines. 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  34. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. Connect point horizontally. Connect point vertically toward π . Shade between closest vertical “left-side down” and “right-side up” pairs of lines. 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  35. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. 4 Connect point horizontally. 3 Connect point vertically toward π . 2 Shade between closest vertical “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  36. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. 4 Connect point horizontally. 3 Connect point vertically toward π . 2 Shade between closest vertical “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  37. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. ◦ 4 Connect point horizontally. ◦ 3 Connect point vertically toward π . ◦ 2 Shade between closest vertical ◦ “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  38. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. ◦ 4 Connect point horizontally. ◦ 3 Connect point vertically toward π . ◦ 2 Shade between closest vertical ◦ “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  39. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. ◦ 4 Connect point horizontally. ◦ 3 Connect point vertically toward π . ◦ 2 Shade between closest vertical ◦ “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  40. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  41. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  42. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  43. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  44. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  45. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  46. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  47. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  48. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  49. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  50. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  51. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  52. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  53. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  54. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  55. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings A Geometric Form for Interval Pattern Containment For [ 2143 , 4231 ] : Algorithm (Forbidden Region for π ≤ ρ ) Graph π as circles, ρ as dots. • ◦ 4 Connect point horizontally. • ◦ 3 Connect point vertically toward π . ◦ • 2 Shade between closest vertical ◦ • “left-side down” and “right-side up” 1 pairs of lines. 0 0 1 2 3 4 Lemma Then a permutation τ ∈ S n “contains” [ π, ρ ] iff the forbidden region constructed above contains no “non-embedding” points. 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  56. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Forbidden Regions Examples: 43512 “contains” [ 1324 , 3412 ] because the Forbidden Region contains no “non-embedding” points. 426153 ∈ S n ([ 1324 , 3412 ]) because the Forbidden Region contains “non-embedding” points. • • ◦ 6 • • ◦ 5 • 5 • 4 • • ◦ 4 • • ◦ 3 ◦ • • 3 ◦ • • 2 • 2 ◦ • • 1 ◦ • • 1 0 0 0 1 2 3 4 5 0 1 2 3 4 5 6 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  57. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  58. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : 4 3 2 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  59. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : 4 3 2 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  60. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : ◦ 4 ◦ 3 ◦ 2 ◦ 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  61. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : ◦ 4 ◦ 3 ◦ 2 ◦ 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  62. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : ◦ 4 ◦ 3 ◦ 2 ◦ 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  63. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  64. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  65. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  66. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  67. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  68. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  69. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  70. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  71. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  72. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  73. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  74. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ 4 ◦ • 3 • ◦ 2 ◦ • 1 0 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  75. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ 4 4 ◦ • 3 3 • ◦ 2 2 ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  76. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ 4 4 ◦ • 3 3 • ◦ 2 2 ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  77. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ ◦ 4 4 ◦ • ◦ 3 3 • ◦ ◦ 2 2 ◦ • ◦ 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  78. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ ◦ 4 4 ◦ • ◦ 3 3 • ◦ ◦ 2 2 ◦ • ◦ 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  79. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ ◦ 4 4 ◦ • ◦ 3 3 • ◦ ◦ 2 2 ◦ • ◦ 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  80. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  81. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  82. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  83. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  84. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  85. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

  86. Permutation Embeddings Interval Avoidance Overview of Bruhat Order Classification for Length Three Patterns Intervals & Embeddings Summary & Further Directions Geometric Interval Embeddings Examples of Strange Forbidden Regions For [ 1324 , 4231 ] : For [ 3412 , 4321 ] : • ◦ • ◦ 4 4 ◦ • ◦ • 3 3 • ◦ • ◦ 2 2 ◦ • ◦ • 1 1 0 0 0 1 2 3 4 0 1 2 3 4 4 th International Conference on Permutation Patterns Interval Avoidance in the Symmetric Group

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend