internal and external cyclidic harmonics
play

Internal and external cyclidic harmonics Hans Volkmer University of - PowerPoint PPT Presentation

Internal and external cyclidic harmonics Hans Volkmer University of Wisconsin at Milwaukee Introduction A solution u ( x , y , z ), ( x , y , z ) D , of the Laplace equation u = u xx + u yy + u zz = 0 is called harmonic in D . In 1894


  1. Internal and external cyclidic harmonics Hans Volkmer University of Wisconsin at Milwaukee

  2. Introduction A solution u ( x , y , z ), ( x , y , z ) ∈ D , of the Laplace equation ∆ u = u xx + u yy + u zz = 0 is called harmonic in D . In 1894 Maxime Bˆ ocher showed that the Laplace equation can be solved by the method of separation of variables in 17 coordinate systems. There are 11 quadratic systems and 6 cyclidic systems. Hans Volkmer Cyclidic harmonics

  3. References M. Bˆ ocher. Ueber die Reihenentwickelungen der Potentialtheorie . B. G. Teubner, Leipzig, 1894. H. S. Cohl and H. Volkmer. Eigenfunction expansions for a fundamental solution of Laplace’s equation on R 3 in parabolic and elliptic cylinder coordinates. Journal of Physics A: Mathematical and Theoretical , 45(35):355204, 2012. H. S. Cohl and H. Volkmer. Separation of variables in an asymmetric cyclidic coordinate system. Journal of Mathematical Physics , 54(6):063513, 2013. W. Miller, Jr. Symmetry and separation of variables . Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. Encyclopedia of Mathematics and its Applications, Vol. 4. Hans Volkmer Cyclidic harmonics

  4. Spherical coordinates Coordinates: r > 0, 0 < θ < π , − π < φ < π . x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. Coordinate surfaces: x 2 + y 2 + z 2 = r 2 , spheres ( x 2 + y 2 ) cot 2 θ = z 2 , circular cones planes x sin φ = y cos φ. Hans Volkmer Cyclidic harmonics

  5. Separation of variables Laplace equation ∆ u = 0 in spherical coordinates: 1 1 ( r 2 u r ) r + sin θ (sin θ u θ ) θ + sin 2 θ u φφ = 0 . Separation of variables u = u 1 ( r ) u 2 ( θ ) u 3 ( φ ): r 2 u ′′ 1 + 2 ru ′ 1 − n ( n + 1) u 1 = 0 , m 2 � � u ′′ 2 + cot θ u ′ 2 + n ( n + 1) − u 2 = 0 , sin 2 θ u ′′ 3 + m 2 u 3 = 0 , where m , n are separation parameters. Hans Volkmer Cyclidic harmonics

  6. Internal and external spherical harmonics Internal harmonics: n (cos θ ) e im φ , G m n ( x , y , z ) = r n P m − n ≤ m ≤ n , where P m n is an associated Legendre function (Ferrer’s function). G m n is a harmonic functions in R 3 . They are polynomials in x , y , z . External harmonics: H m n ( x , y , z ) = r − n − 1 P m n (cos θ ) e im φ , − n ≤ m ≤ n . n is a harmonic functions in R 3 \ { 0 } . H m Hans Volkmer Cyclidic harmonics

  7. Expansion of reciprocal distance Theorem. Let r , r ′ ∈ R 3 be such that � r � < � r ′ � . Then ∞ n 1 ( n − m )! � � ( n + m )! G m n ( r ) H m n ( r ′ ) . � r − r ′ � = n =0 m = − n This formula may be used to find the Green’s function for the ball. Hans Volkmer Cyclidic harmonics

  8. Sphero-conal coordinates √ Parameter: 0 < k < 1, k ′ = 1 − k 2 . Coordinates: r > 0, 0 < s < 1 < t < k − 2 . x = krst , √ √ k y = k ′ r 1 − s t − 1 , 1 � � 1 − k 2 s 1 − k 2 t . z = k ′ r Coordinate surfaces: x 2 + y 2 + z 2 = r 2 , spheres x 2 y 2 z 2 elliptical cones s − 1 − s − k − 2 − s = 0 , x 2 y 2 z 2 elliptical cones t + t − 1 − k − 2 − t = 0 . Hans Volkmer Cyclidic harmonics

  9. Sphero-conal coordinates Hans Volkmer Cyclidic harmonics

  10. Separation of variables Laplace equation in sphero-conal coordinates: 1 4 ( t − s )( r 2 u r ) r + ω ( s )( ω ( s ) u s ) s + ω ( t )( ω ( t ) u t ) t = 0 , where ω ( s ) = | s (1 − s )( k − 2 − s ) | 1 / 2 . Separation of variables u = u 1 ( r ) u 2 ( s ) u 3 ( t ): r 2 u ′′ 1 + 2 ru ′ 1 − n ( n + 1) u 1 = 0 , and v = u 2 , u 3 satisfy Lam´ e’s equation v ′ + k − 2 h − n ( n + 1) s v ′′ + 1 � 1 1 1 � s + s − 1 + 4 s ( s − 1)( s − k − 2 ) v = 0 . s − k − 2 2 where n , h are separation parameters. Hans Volkmer Cyclidic harmonics

  11. Internal and external sphero-conal harmonics Internal sphero-conal harmonics: G m n ( x , y , z ) = r n E m n ( s ) E m n ( t ) . where E m e polynomials. G m n are Lam´ n is a harmonic polynomial. External sphero-conal harmonics: H m n ( x , y , z ) = r − n − 1 E m n ( s ) E m n ( t ) . n is harmonic in R 3 \ { 0 } . H m Hans Volkmer Cyclidic harmonics

  12. Expansion of reciprocal distance Let r , r ′ ∈ R 3 be such that � r � < � r ′ � . Then ∞ n 1 � � C m n G m n ( r ) H m n ( r ′ ) . � r − r ′ � = n =0 m = − n Hans Volkmer Cyclidic harmonics

  13. Toroidal coordinates Coordinates: 0 < σ < ∞ , − π < ψ, φ < π . sinh σ cos φ = cosh σ − cos ψ, x sinh σ sin φ y = cosh σ − cos ψ, sin ψ = cosh σ − cos ψ. z Coordinate surfaces: (1 + x 2 + y 2 + z 2 ) 2 = 4( x 2 + y 2 ) coth 2 σ tori 1 ( z − cot ψ ) 2 + x 2 + y 2 = spherical bowls sin 2 ψ, planes x sin φ = y cos φ. Hans Volkmer Cyclidic harmonics

  14. Toroidal coordinates Hans Volkmer Cyclidic harmonics

  15. Separation of variables Laplace equation: � sinh σ u σ � � sinh σ u ψ � u φφ + + (cosh σ − cos ψ ) sinh σ = 0 . cosh σ − cos ψ cosh σ − cos ψ σ ψ Separation of variables: � u = cosh σ − cos ψ u 1 ( σ ) u 2 ( ψ ) u 3 ( φ ) , m 2 � � 1 n 2 − 1 � ′ − sinh σ u ′ � 4 + u 1 = 0 , sinh 2 σ 1 sinh σ u ′′ 2 + n 2 u 2 = 0 , u ′′ 3 + m 2 u 3 = 0 . where m , n are separation parameters. Hans Volkmer Cyclidic harmonics

  16. Internal and external toroidal harmonics Internal toroidal harmonics: m , n ∈ Z 2 (cosh σ ) e in ψ e im φ , G m � cosh σ − cos ψ Q m n ( x , y , z ) = n − 1 where Q is the associated Legendre function. These are harmonic functions in R 3 except for the z -axis. External sphero-conal harmonics: H m � cosh σ − cos ψ P m 2 (cosh σ ) e in ψ e im φ . n ( x , y , z ) = n − 1 These are harmonic function in R 3 except for the unit circle z = 0, x 2 + y 2 = 1. Hans Volkmer Cyclidic harmonics

  17. Expansion of reciprocal distance Let r , r ′ ∈ R 3 be such that σ ′ < σ . Then ∞ ∞ π ( − 1) m Γ( n − m + 1 1 1 2 ) � � 2 ) G m n ( r ) H m n ( r ′ ) . � r − r ′ � = Γ( n + m + 1 n = −∞ m = −∞ Hans Volkmer Cyclidic harmonics

  18. Stereographic projection Let x 0 , x 1 , x 2 , x 3 be cartesian coordinates in R 4 . We consider the stereographic projection P : S 3 \ { 1 , 0 , 0 , 0) } → R 3 given by 1 P ( x 0 , x 1 , x 2 , x 3 ) = ( x 1 , x 2 , x 3 ) . 1 − x 0 The inverse map is 1 x 2 + y 2 + z 2 + 1( x 2 + y 2 + z 2 − 1 , 2 x , 2 y , 2 z ) . P − 1 ( x , y , z ) = Example: The intersection of the quadric hypersurface 2 = tanh 2 σ x 2 1 + x 2 with S 3 is mapped to the torus (1 + x 2 + y 2 + z 2 ) 2 = 4( x 2 + y 2 ) coth 2 σ. The stereographic projection maps a quadric surface to a cyclidic surface. Hans Volkmer Cyclidic harmonics

  19. Stereographic projection and harmonic functions Theorem. Let D be an open subset of S 3 not containing (1 , 0 , 0 , 0), let E = { ( rx 0 , rx 1 , rx 2 , rx 3 ) : r > 0 , ( x 0 , x 1 , x 2 , x 3 ) ∈ D } , and let F = P ( D ) be the stereographic image of D . Let the function U : E → R be homogeneous of degree − 1 2 or − 3 2 , and let w : F → R satisfy U = w ◦ P on D . Then U is harmonic on E if and only if w ( x , y , z )( x 2 + y 2 + z 2 + 1) − 1 / 2 is harmonic on F . Hans Volkmer Cyclidic harmonics

  20. Sphero-conal coordinates on R 4 Coordinates: r > 0, a 0 < s 1 < a 1 < s 2 < a 2 < s 3 < a 3 , � 4 i =1 ( s i − a j ) x 2 j = r 2 . � 4 j � = i =0 ( a i − a j ) Coordinate surfaces: r 2 = x 2 0 + x 2 1 + x 2 2 + x 2 3 and 4 x 2 j � = 0 for i = 1 , 2 , 3 . s i − a j j =0 Sphero-conal coordinates are orthogonal. Hans Volkmer Cyclidic harmonics

  21. Separation of variables in sphero-conal coordinates Assume a harmonic function of the form U ( x 0 , x 1 , x 2 , x 3 ) = w 0 ( r ) w 1 ( s 1 ) w 2 ( s 2 ) w 3 ( s 3 ) . Then 0 + 4 0 + 4 λ 0 w ′′ r w ′ r 2 w 0 = 0 and, for w = w 1 , w 2 , w 3 , � 2   3 3 �  w ′′ + 1 1 � � w ′  + � λ i s 2 − i ( s − a j ) w = 0 . 2 s − a j j =0 j =0 i =0 This is a Fuchsian equation with five regular singular points a 0 , a 1 , a 2 , a 3 , ∞ with exponents 0 and 1 / 2 at a 0 , a 1 , a 2 , a 3 . The separation parameters are λ 0 , λ 1 , λ 2 . Hans Volkmer Cyclidic harmonics

  22. Five-cyclide coordinate system on R 3 Sphero-conal coordinates s 1 , s 2 , s 3 form a coordinate system for the intersection of the hypersphere S 3 with the positive cone in R 4 . Using the stereographic projection P we project these coordinates to R 3 . We obtain an orthogonal coordinate system for the set T = { ( x , y , z ) : x , y , z > 0 , x 2 + y 2 + z 2 > 1 } . Explicitly, x 1 x 2 x 3 x = , y = , z = , 1 − x 0 1 − x 0 1 − x 0 where � 3 i =1 ( s i − a j ) x 2 j = , j = 0 , 1 , 2 , 3 . � 3 j � = i =0 ( a i − a j ) Coordinate surfaces: ( x 2 + y 2 + z 2 − 1) 2 4 x 2 4 y 2 4 z 2 + + + = 0 . s − a 0 s − a 1 s − a 2 s − a 3 Hans Volkmer Cyclidic harmonics

  23. Coordinate surface s 2 = const Hans Volkmer Cyclidic harmonics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend