intermediate spectral statistics eugene bogomolny
play

Intermediate spectral statistics Eugene Bogomolny University - PowerPoint PPT Presentation

Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Intermediate spectral statistics Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Th eorique et Mod` eles Statistiques, Orsay


  1. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Intermediate spectral statistics Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Th´ eorique et Mod` eles Statistiques, Orsay France Collaborators : C. Schmit, O. Giraud, R. Dubertrand Conference on Frontiers of Nanoscience, Trieste 2015 Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  2. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Outlook 1 Inroduction 2 Pseudo-integrable models 3 Pseudo-integrable map 4 Random Lax matrices 5 Conclusion Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  3. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Well accepted conjectures Integrable systems (localized states) : spectral statistics = Poisson statistics Berry , Tabor (1977) 1 0.8 p(s)=exp(−s) 0.6 (∆+Ε)Ψ=0 p(s) 0.4 0.2 0 0 1 2 3 s Chaotic systems (extended states) : spectral statistics = random matrix statistics Bohigas, Giannoni, Schmit (1984) 1 p(s)= π /2 s exp(− π s 2 /4) 0.8 0.6 (∆+Ε)Ψ=0 p(s) 0.4 0.2 0 0 1 2 3 s Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  4. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion 3-d Anderson model ε i a † a † � � H = i a i − j a i delocalized states i adjacent ( j , i ) density localized states localized states ε i = i.i.d. ∈ [ − W / 2 , W / 2] Mobility edge : E c ( W ) 0 W > W c ≈ 16 . 5 → all states are localized − E c E c | E | > E c . States are localized. Poisson statistics of eigenvalues | E | < E c . States are delocalized. Random matrix statistics | E | = E c . States are neither localized or delocalized. Fractal wave functions. Intermediate type of spectral statistics. Shklovskii et al. (1993) Spectral characteristics of 3-d Anderson model at metal-insulator transition 1 5 Nearest−neighbor distribution Critical, W=16.5 Insulator, W=100 4 Number variance Metal, W=5 3 Critical, W=16.5 0.5 2 Metal, W=5 1 Insulator, W=100 0 0 0 1 2 3 4 0 1 2 3 4 5 s L Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  5. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Characteristic features of intermediate statistics Level repulsion at small distances (head) as for the RMT p ( s ) → 0 when s → 0 Exponential decrease of p ( s ) at large distances (tail) as for the Poisson p ( s ) ∼ e − as when s → ∞ Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  6. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Characteristic features of intermediate statistics Level repulsion at small distances (head) as for the RMT p ( s ) → 0 when s → 0 Exponential decrease of p ( s ) at large distances (tail) as for the Poisson p ( s ) ∼ e − as when s → ∞ Merman Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  7. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Characteristic features of intermediate statistics Level repulsion at small distances (head) as for the RMT p ( s ) → 0 when s → 0 Exponential decrease of p ( s ) at large distances (tail) as for the Poisson p ( s ) ∼ e − as when s → ∞ Merman Linear asymptotics of the number variance n(L) Σ 2 ( L ) ≡ � ( n ( L ) − ¯ n ( L )) 2 � → χ L when L → ∞ χ = spectral compressibility L χ = 1 for Poisson, χ = 0 for the RMT Multi-fractal character of eigenfunctions �| Ψ | 2 q � → V − ( q − 1) D q when V → ∞ , V = system size D q = fractal dimensions D q = 0 for the Poisson, D q = 1 for the RMT Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  8. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Random matrix models with intermediate statistics Critical random matrices, Levitov (1990), Altshuler & Levitov (1997) g M ij ∼ ε j δ ij + | i − j | α , α < 1 → RMT , α > 1 → Posson , α = 1 → critical Critical power law banded random matrices, Mirlin et al. (1996) H ij = i.i.d. Gaussian variables, ( β = 1 , 2) � − 1 1 + ( i − j ) 2 � �| H ij | 2 � = �| H ii | 2 � = β − 1 � H ij � = 0 , i � = j , b 2 b → ∞ = ⇒ RMT, b → 0 = ⇒ Poisson Main results Perturbation series, Mirlin, Evers (2000) b ≫ 1 : D q = 1 − q / (2 πβ b ) , χ = 1 / (2 πβ b ) , D q = 1 − q χ √ b ≪ 1 : ( c β = 1 for β = 1, c β = π/ 8 for β = 2) Γ( q − 1 / 2) D q = Γ( q − 1 / 2) D q = 4 bc β √ π Γ( q ) , χ = 1 − 4 bc β , √ π Γ( q ) (1 − χ ) Symmetry, Mirlin et al. (2006) ∆ q ≡ ( D q − 1)( q − 1) , ∆ q = ∆ 1 − q Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  9. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Pseudo-integrable polygonal billiards Q : Do dynamical models with intermediate statistics exist ? R : Yes, pseudo-integrable models π mi n π i n Finite genus 2-dim surfaces g = 1 + N m i − 1 � , N = the least common multiple of n i 2 n i i Triangles [ π/ 4 , π/ 4 , π/ 2] and [ π/ 6 , π/ 3 , π/ 2] are integrable − → g = 1 (torus) Triangles [ π/ 5 , 3 π/ 10 , π/ 2] and [ π/ 8 , 3 π/ 8 , π/ 2] are not − → g = 2 Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  10. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Classical mechanics of pseudo-integrable billiards 4 5 6 1 2 3 0 4 7 6 5 7 Unfolding of π/ 8 right triangle 0 1 2 3 4 Interval-exchange map I 1 = [0 , 1] , I 2 = [1 , 2] , I 3 = [2 , 3] , I 4 = [3 , 4] [0 , 7] = I 4 , [7 , 6] = I 3 , [6 , 5] = I 2 , [5 , 4] = I 1 I 1 , I 2 , I 3 , I 4 − → I 4 , I 3 , I 2 , I 1 Neither integrable nor chaotic Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  11. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Spectral statistics for π/ n right triangles (numerics) 0.05 1.8 0.00 1.2 N(s)−Nsp(s) N(s) 1.0 −0.05 0.6 R(s) 0.5 0.0 −0.10 0 1 2 3 s 0 2 4 0.0 s 0 1 2 3 4 s � s Left : Cumulative nearest-neighbour distribution, N ( s ) = 0 p ( t )d t , for 10 000 levels for π/ 5 right triangle. Each curve contains 2500 consecutive levels · · · Poisson : p p ( s ) = e − s , – – – RMT : p Wigner ( s ) = π/ 2 s e − π s 2 / 4 —– Semi-Poisson : p sp ( s ) = 4 s e − 2 s , R 2 ( s ) = 1 − e − 4 s Right : Difference between N ( s ) for π/ n right triangles with n = 5 , 7 , . . . , 30 and the Semi-Poisson formula N sp ( s ) = 1 − (2 s + 1)e − 2 s . (5000-20000 levels). Closest lines correspond to n = 5 , 8 , 10 , 12 Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  12. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Calculation of level compressibility π/ n right triangle 1.5 1 K(t) π 0.5 n 0 0 1 2 3 t  0 when n is odd χ ≡ K (0) = n + ǫ ( n )  3( n − 2) , ǫ ( n ) = 2 when n is even but not divisible by 3 6 when n is divisible by 6  Sum over all periodic orbit by using the Veech group. Tedious calculations Rectangular billiard with a flux line Aharonov-Bohm flux line Aharonov−Bohm flux line A φ = α/ r at point x 0 , y 0 Ψ n ( r , φ ) = 0 on a rectangle a , b χ ≡ K (0) = 1 − 4 α (1 − α ) + 6 αη η = explicit function of e 1 = x 0 / a and e 2 = y 0 / b , For irrational e 1 , e 2 , η = 1 / 6 Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  13. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Strong diffraction Wedge , γ = α/π √ ϕ kr ∼ 1 θ f α θ i D ( θ f , θ i ) = 2 γ sin π �� cos π γ − cos θ f + θ i cos π γ − cos θ f − θ i � − 1 � � − 1 � − γ γ γ Flux line ei πα i sin πα α 2 cos[( θ f − θ i ) / 2] e i( θ f − θ i ) / 2 D ( θ f , θ i ) = − πα − i e Formation of wave propagating in periodic orbit channels ϕ ≈ p / k < 1 specular large angle direction reflection 2π−2α small angle δϕ reflection Ψ( x , y ) ∼ sin py e i qx ϕ α w ϕ p = π w n , q = π Lm Dominant effect : E = p 2 + q 2 mirror reflection Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

  14. Inroduction Pseudo-integrable models Pseudo-integrable map Random Lax matrices Conclusion Superscars m = 347, n = 1 ; E 347 , 1 = 10041 . 87 m = 228, n = 1 ; E 228 , 1 = 10106 . 31 E exact = 10106 . 20 E exact = 10041 . 41 Fourier expansion mn ( x , y ) = cos π a ( m − 1 2 ) x sin π Ψ ( e ) � Ψ( x , y ) = C mn Ψ mn ( x , y ) , b ny mn 90 120 80 100 70 60 80 50 0 0 60 20 40 20 40 40 60 30 60 40 80 80 20 100 100 20 120 10 120 140 140 160 0 160 0 E exact = 10041 . 41 E exact = 10106 . 20 Eugene Bogomolny, LPTMS, Orsay , France Intermediate statistics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend