inflationary non gaussianities in the most general second
play

Inflationary non-Gaussianities in the most general second-order - PowerPoint PPT Presentation

1 Inflationary non-Gaussianities in the most general second-order scalar-tensor theories Antonio De Felice, IF, Naresuan U. Yukawa Institute 4 March 2012 with Shinji Tsujikawa 2 Introduction Accelerated expansion at early times 2


  1. 1 Inflationary non-Gaussianities in the most general second-order scalar-tensor theories Antonio De Felice, IF, Naresuan U. Yukawa Institute – 4 March 2012 with Shinji Tsujikawa

  2. 2 Introduction • Accelerated expansion at early times

  3. 2 Introduction • Accelerated expansion at early times • Epoch: after QG and GUT (scale ?)

  4. 2 Introduction • Accelerated expansion at early times • Epoch: after QG and GUT (scale ?) • New physics: usually scalar field (?)

  5. 2 Introduction • Accelerated expansion at early times • Epoch: after QG and GUT (scale ?) • New physics: usually scalar field (?) • Or new gravity: 1st model Starobinsky model

  6. 3 General scalar-tensor theory d 4 x √− g � � � 1 2 M 2 S = P R + P ( φ, X ) − G 3 ( φ, X ) � φ + L 4 + L 5

  7. 3 General scalar-tensor theory d 4 x √− g � � � 1 2 M 2 S = P R + P ( φ, X ) − G 3 ( φ, X ) � φ + L 4 + L 5 G 4 ( φ, X ) R + G 4 ,X [( � φ ) 2 − ( ∇ µ ∇ ν φ ) ( ∇ µ ∇ ν φ )] , L 4 =

  8. 3 General scalar-tensor theory d 4 x √− g � � � 1 2 M 2 S = P R + P ( φ, X ) − G 3 ( φ, X ) � φ + L 4 + L 5 G 4 ( φ, X ) R + G 4 ,X [( � φ ) 2 − ( ∇ µ ∇ ν φ ) ( ∇ µ ∇ ν φ )] , L 4 = G 5 ( φ, X ) G µν ( ∇ µ ∇ ν φ ) − 1 6 G 5 ,X [( � φ ) 3 L 5 = − 3( � φ ) ( ∇ µ ∇ ν φ ) ( ∇ µ ∇ ν φ ) +2( ∇ µ ∇ α φ ) ( ∇ α ∇ β φ ) ( ∇ β ∇ µ φ )] . X ≡ − 1 2 ( ∂φ ) 2

  9. 4 Vacuum EOMs on flat FLRW • ds 2 = − dt 2 + a ( t ) 2 d x 2 , φ = φ ( t )

  10. 4 Vacuum EOMs on flat FLRW • ds 2 = − dt 2 + a ( t ) 2 d x 2 , φ = φ ( t ) 3 M 2 P H 2 F + P + 6 H G 4 ,φ ˙ φ + ( G 3 ,φ − 12 H 2 G 4 ,X + 9 H 2 G 5 ,φ − P ,X ) ˙ φ 2 0 = φ 3 + 3( G 5 ,φX − 2 G 4 , XX ) H 2 ˙ φ 4 − H 3 G 5 , XX ˙ φ 5 , +(6 G 4 ,φX − 3 G 3 ,X − 5 G 5 ,X H 2 ) H ˙ φ 2 − HG 5 ,X ˙ φ 3 + F M 2 H + 3 M 2 P H 2 F + P + 4 HG 4 ,φ ˙ 2[( G 5 ,φ − 2 G 4 ,X ) ˙ P ] ˙ 0 = φ φ 2 + 2 H ( G 5 ,φX − 2 G 4 , XX ) ˙ φ 3 − φ + (2 G 4 ,φX − G 3 ,X − 3 H 2 G 5 ,X ) ˙ +[2 G 4 ,φ + 4 H ( G 5 ,φ − G 4 ,X ) ˙ φ 2 + 2 H G 5 ,φφ − G 5 ,X H 2 − 2 G 4 ,φX � � � � 2 G 4 ,φφ + 3 H 2 G 5 ,φ − G 3 ,φ − 6 H 2 G 4 ,X φ 3 ˙ ˙ + φ 4 . − H 2 G 5 ,φX ˙

  11. 4 Vacuum EOMs on flat FLRW • ds 2 = − dt 2 + a ( t ) 2 d x 2 , φ = φ ( t ) 3 M 2 P H 2 F + P + 6 H G 4 ,φ ˙ φ + ( G 3 ,φ − 12 H 2 G 4 ,X + 9 H 2 G 5 ,φ − P ,X ) ˙ φ 2 0 = φ 3 + 3( G 5 ,φX − 2 G 4 , XX ) H 2 ˙ φ 4 − H 3 G 5 , XX ˙ φ 5 , +(6 G 4 ,φX − 3 G 3 ,X − 5 G 5 ,X H 2 ) H ˙ φ 2 − HG 5 ,X ˙ φ 3 + F M 2 H + 3 M 2 P H 2 F + P + 4 HG 4 ,φ ˙ 2[( G 5 ,φ − 2 G 4 ,X ) ˙ P ] ˙ 0 = φ φ 2 + 2 H ( G 5 ,φX − 2 G 4 , XX ) ˙ φ 3 − φ + (2 G 4 ,φX − G 3 ,X − 3 H 2 G 5 ,X ) ˙ +[2 G 4 ,φ + 4 H ( G 5 ,φ − G 4 ,X ) ˙ φ 2 + 2 H G 5 ,φφ − G 5 ,X H 2 − 2 G 4 ,φX � � � � 2 G 4 ,φφ + 3 H 2 G 5 ,φ − G 3 ,φ − 6 H 2 G 4 ,X φ 3 ˙ ˙ + φ 4 . − H 2 G 5 ,φX ˙ P , and ˙ φE 3 = ˙ • F = 1 + 2 G 4 /M 2 E 1 + 3 H ( E 1 + E 2 ) = 0 .

  12. 5 • Removing P from E 2 by E 1 (1 − 4 δ G 4 X − 2 δ G 5 X + 2 δ G 5 φ ) ǫ = δ P X + 3 δ G 3 X − 2 δ G 3 φ + 6 δ G 4 X − δ G 4 φ − 6 δ G 5 φ + 3 δ G 5 X +12 δ G 4 XX + 2 δ G 5 XX − 10 δ G 4 φX + 2 δ G 4 φφ − 8 δ G 5 φX + 2 δ G 5 φφ − δ φ ( δ G 3 X + 4 δ G 4 X − δ G 4 φ + 8 δ G 4 XX +3 δ G 5 X − 4 δ G 5 φ + 2 δ G 5 XX − 2 δ G 4 φX − 4 δ G 5 φX ) ,

  13. 5 • Removing P from E 2 by E 1 (1 − 4 δ G 4 X − 2 δ G 5 X + 2 δ G 5 φ ) ǫ = δ P X + 3 δ G 3 X − 2 δ G 3 φ + 6 δ G 4 X − δ G 4 φ − 6 δ G 5 φ + 3 δ G 5 X +12 δ G 4 XX + 2 δ G 5 XX − 10 δ G 4 φX + 2 δ G 4 φφ − 8 δ G 5 φX + 2 δ G 5 φφ − δ φ ( δ G 3 X + 4 δ G 4 X − δ G 4 φ + 8 δ G 4 XX +3 δ G 5 X − 4 δ G 5 φ + 2 δ G 5 XX − 2 δ G 4 φX − 4 δ G 5 φX ) , • Slow-roll parameters G 3 ,X ˙ ˙ ¨ P ,X X φX G 3 ,φ X G 4 ,X X H φ ǫ = − H 2 , δ φ = , δ P X = , δ G 3 X = , δ G 3 φ = , δ G 4 X = , H ˙ M 2 P H 2 F M 2 M 2 P H 2 F M 2 P HF P F φ G 4 ,XX X 2 G 4 ,φ ˙ G 4 ,φX ˙ φ φX G 4 ,φφ X G 5 ,φ X δ G 4 φ = , δ G 4 φX = , δ G 4 φφ = , δ G 4 XX = , δ G 5 φ = , M 2 M 2 M 2 M 2 M 2 P H 2 F P HF P HF P F P F G 5 ,X H ˙ G 5 ,XX H ˙ φX 2 G 5 ,φX X 2 G 5 ,φφ ˙ φX φX δ G 5 X = , δ G 5 XX = δ G 5 φX = , δ G 5 φφ = . M 2 M 2 M 2 M 2 P F P F P F P HF

  14. 6 • Perturbation theory / Uniform field gauge ds 2 = − [(1+ α ) 2 − a ( t ) − 2 e − 2 R ( ∂ψ ) 2 ] dt 2 +2 ∂ i ψ dt dx i + a ( t ) 2 e 2 R d x 2 ,

  15. 6 • Perturbation theory / Uniform field gauge ds 2 = − [(1+ α ) 2 − a ( t ) − 2 e − 2 R ( ∂ψ ) 2 ] dt 2 +2 ∂ i ψ dt dx i + a ( t ) 2 e 2 R d x 2 , • Action at second order � R 2 + 1 R − w 2 α ) ∂ 2 ψ − 2 w 1 R + 1 3 w 3 α 2 + w 4 � � dtd 3 x a 3 a 2 α∂ 2 R + 3 w 2 α ˙ a 2 ( ∂ R ) 2 − 3 w 1 ˙ a 2 (2 w 1 ˙ S 2 = ,

  16. 6 • Perturbation theory / Uniform field gauge ds 2 = − [(1+ α ) 2 − a ( t ) − 2 e − 2 R ( ∂ψ ) 2 ] dt 2 +2 ∂ i ψ dt dx i + a ( t ) 2 e 2 R d x 2 , • Action at second order � R 2 + 1 R − w 2 α ) ∂ 2 ψ − 2 w 1 R + 1 3 w 3 α 2 + w 4 � � dtd 3 x a 3 a 2 α∂ 2 R + 3 w 2 α ˙ a 2 ( ∂ R ) 2 − 3 w 1 ˙ a 2 (2 w 1 ˙ S 2 = , M 2 P F − 4 XG 4 ,X − 2 HX ˙ w 1 = φG 5 ,X + 2 XG 5 ,φ , 2 M 2 φG 3 ,X − 16 H ( XG 4 ,X + X 2 G 4 ,XX ) + 2 ˙ P HF − 2 X ˙ w 2 = φ ( G 4 ,φ + 2 XG 4 ,φX ) − 2 H 2 ˙ φ (5 XG 5 ,X + 2 X 2 G 5 ,XX ) + 4 HX (3 G 5 ,φ + 2 XG 5 ,φX ) , − 9 M 2 pl H 2 F + 3( XP ,X + 2 X 2 P ,XX ) + 18 H ˙ φ (2 XG 3 ,X + X 2 G 3 ,XX ) − 6 X ( G 3 ,φ + XG 3 ,φX ) w 3 = +18 H 2 (7 XG 4 ,X + 16 X 2 G 4 ,XX + 4 X 3 G 4 ,XXX ) − 18 H ˙ φ ( G 4 ,φ + 5 XG 4 ,φX + 2 X 2 G 4 ,φXX ) + 6 H 3 ˙ φ (15 XG 5 ,X + 13 X 2 G 5 ,XX + 2 X 3 G , 5 XXX ) − 18 H 2 X (6 G 5 ,φ + 9 XG 5 ,φX + 2 X 2 G 5 ,φXX ) , M 2 P F − 2 XG 5 ,φ − 2 XG 5 ,X ¨ w 4 = φ .

  17. 7 Second order Lagrangian • α = 2 w 1 ˙ R /w 2

  18. 7 Second order Lagrangian • α = 2 w 1 ˙ R /w 2 • Reduced action R 2 − c 2 � � � ˙ dtd 3 x a 3 Q a 2 ( ∂ R ) 2 s S 2 = ,

  19. 7 Second order Lagrangian • α = 2 w 1 ˙ R /w 2 • Reduced action R 2 − c 2 � � � ˙ dtd 3 x a 3 Q a 2 ( ∂ R ) 2 s S 2 = , w 1 (4 w 1 w 3 + 9 w 2 2 ) Q = , 3 w 2 2 3(2 w 2 1 w 2 H − w 2 w 1 w 2 − 2 w 2 2 w 4 + 4 w 1 ˙ 1 ˙ w 2 ) c 2 = . s w 1 (4 w 1 w 3 + 9 w 2 2 )

  20. 8 Three-point function • Look for � τf �R ( k 1 ) R ( k 2 ) R ( k 3 ) � = − i dτ a � 0 | [ R ( τ f , k 1 ) R ( τ f , k 2 ) R ( τ f , k 3 ) , H int ( τ )] | 0 � , τi

  21. 8 Three-point function • Look for � τf �R ( k 1 ) R ( k 2 ) R ( k 3 ) � = − i dτ a � 0 | [ R ( τ f , k 1 ) R ( τ f , k 2 ) R ( τ f , k 3 ) , H int ( τ )] | 0 � , τi • 3rd order action � dt d 3 x a 3 { a 1 α 3 + α 2 ( a 2 R + a 3 ˙ R + a 4 ∂ 2 R /a 2 + a 5 ∂ 2 ψ/a 2 ) S 3 = + α [ a 6 ∂ i R ∂ i ψ/a 2 + a 7 ˙ R ∂ 2 R /a 2 + a 9 ( ∂ i ∂ j ψ∂ i ∂ j ψ − ∂ 2 ψ∂ 2 ψ ) /a 4 RR + a 8 ˙ + a 10 ( ∂ i ∂ j ψ∂ i ∂ j R − ∂ 2 ψ∂ 2 R ) /a 4 + a 11 R ∂ 2 ψ/a 2 + a 12 ˙ R ∂ 2 ψ/a 2 + a 13 R ∂ 2 R /a 2 + a 14 ( ∂ R ) 2 /a 2 + a 15 ˙ R 2 ] R 3 + b 2 R ( ∂ R ) 2 /a 2 + b 3 ˙ R 2 R + c 1 ˙ R ∂ i R ∂ i ψ/a 2 + c 2 ˙ R 2 ∂ 2 ψ/a 2 + c 3 ˙ R R ∂ 2 ψ/a 2 + b 1 ˙ R + d 2 R ) ( ∂ i ∂ j ψ∂ i ∂ j ψ − ∂ 2 ψ∂ 2 ψ ) /a 4 + d 3 ∂ i R ∂ i ψ ∂ 2 ψ/a 4 } , + ( d 1 ˙

  22. 9 Reducing the action • S 3 : � dt d 3 x a 3 f 1 + af 2 + f 3 /a � � S 3 = ,

  23. 9 Reducing the action • S 3 : � dt d 3 x a 3 f 1 + af 2 + f 3 /a � � S 3 = , � Q 2 � � Q 2 � Q Q R 3 + R 2 + A 9 ˙ R ˙ ˙ f 1 ≡ A 1 + A 3 − A 5 A 4 − A 6 R ∂ i R ∂ i X w 2 w 2 w 2 w 1 1 1 1 + 1 � � A 5 ˙ R + A 6 R ( ∂ i ∂ j X )( ∂ i ∂ j X ) , w 2 1 � 2 L 1 Q Q � 2 L 1 Q L 1 Q R ∂ 2 R + A 8 R ( ∂ R ) 2 − A 9 R 2 ∂ 2 R + A 6 R ( ∂ R ) 2 ˙ R ˙ ˙ f 2 ≡ A 2 − A 3 L 1 + A 5 − A 7 w 1 w 1 w 1 w 1 + A 7 − 2 A 5 L 1 R ( ∂ i ∂ j R )( ∂ i ∂ j X ) − 2 A 6 L 1 R ( ∂ i ∂ j R )( ∂ i ∂ j X ) − A 9 L 1 ∂ 2 R ∂ i R ∂ i X , ˙ w 1 w 1 w 1 � A 5 L 2 � R [( ∂ i ∂ j R )( ∂ i ∂ j R ) − ( ∂ 2 R ) 2 ] + A 6 L 2 1 R [( ∂ i ∂ j R )( ∂ i ∂ j R ) − ( ∂ 2 R ) 2 ] ˙ f 3 ≡ 1 − A 7 L 1 + A 9 L 2 1 ( ∂ R ) 2 ∂ 2 R .

  24. 10 Reducing the action — 2 � • Finally S 3 = dt L 3 � � R 2 + a C 2 M 2 P R ( ∂ R ) 2 + a 3 C 3 M P ˙ R 3 + a 3 C 4 ˙ d 3 x a 3 C 1 M 2 P R ˙ L 3 = R ( ∂ i R )( ∂ i X ) P ) ∂ 2 R ( ∂ X ) 2 + a C 6 ˙ ∂ 2 R ( ∂ R ) 2 − R ∂ i ∂ j ( ∂ i R )( ∂ j R ) + a 3 ( C 5 /M 2 R 2 ∂ 2 R + C 7 � � /a δ L 2 � � � � ∂ 2 R ∂ i R ∂ i X − R ∂ i ∂ j ( ∂ i R )( ∂ j X ) � + a ( C 8 /M P ) + F 1 , � δ R � 1

  25. 11 Three-point function • Looking for � τf �R ( k 1 ) R ( k 2 ) R ( k 3 ) � = − i dτ a � 0 | [ R ( τ f , k 1 ) R ( τ f , k 2 ) R ( τ f , k 3 ) , H int ( τ )] | 0 � , τi

  26. 11 Three-point function • Looking for � τf �R ( k 1 ) R ( k 2 ) R ( k 3 ) � = − i dτ a � 0 | [ R ( τ f , k 1 ) R ( τ f , k 2 ) R ( τ f , k 3 ) , H int ( τ )] | 0 � , τi �R ( k 1 ) R ( k 2 ) R ( k 3 ) � = (2 π ) 3 δ (3) ( k 1 + k 2 + k 3 )( P R ) 2 B R ( k 1 , k 2 , k 3 ) ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend