in search of extra dimensions
play

In Search of Extra Dimensions Hooman Davoudiasl Brookhaven National - PowerPoint PPT Presentation

In Search of Extra Dimensions Hooman Davoudiasl Brookhaven National Laboratory Pheno 10 May 10-12, 2010, University of Wisconsin-Madison Extra dimensions: 96-year old idea! G. Nordstr om, 1914: Unify pre-GR gravity and EM in 5D. Th.


  1. In Search of Extra Dimensions Hooman Davoudiasl Brookhaven National Laboratory Pheno 10 May 10-12, 2010, University of Wisconsin-Madison

  2. Extra dimensions: 96-year old idea! • G. Nordstr¨ om, 1914: Unify pre-GR gravity and EM in 5D. • Th. Kaluza, 1921: Unify GR and EM in 5D. • O. Klein, 1926: Unify GR and EM with one compact extra dimension.

  3. Extra dimensions in Recent Times • String theory, since the 1980’s. - Quantum gravity. - Consistency requires 10 or 11 dimension. - Extra dimensions compactified near fundamental scale M F ( M P ∼ 10 19 GeV). • Particle Physics, since the 1990’s. - Motivation: the hierarchy, m W /M P ∼ 10 − 17 . - Antoniadis, 1990: TeV − 1 extra dimensions and SUSY breaking. - Weak scale superstrings, Lykken, 1996. - Large Extra Dimensions; Arkani-Hamed, Dimopoulos, Dvali, 1998: m W < ∼ M F . - A Warped Extra Dimension; Randall, Sundrum, 1999: m W ∼ e − kπr c M P ; kπr c ∼ 35. - TeV − 1 Universal Extra Dimensions; Appelquist, Cheng, Dobrescu, 2000. - . . .

  4. Large Extra Dimensions (LED) Arkani-Hamed, Dimopoulos, Dvali, 1998 P ∼ R n M n +2 • n compact extra dimensions, M F ∼ TeV: M 2 F - R < ∼ mm (gravity tests) ⇒ n ≥ 2. • SM localized on a 3-brane (4D). • Gravity propagates in all dimensions. - Gravity “diluted” in extra dimensions. • Graviton Kaluza-Klein (KK) modes. - Quantized momenta in extra dimensions: m KK = j/R ; j = 0 , 1 , 2 , . . . j } h ( − → M P T µν � j ) L = − 1 fm < ∼ R < 2 ≤ n ≤ 6. µν ; ∼ mm; {− →

  5. Key Signals for LED • Missing energy: KK gravitons escape into the “bulk.” e + e − → γ G KK q ¯ q → j G KK ( E / ) ; . . . Missing E signature. Giudice, Rattazzi, Wells 1998 Mirabelli, Perelstein, Peskin, 1998 • Virtual exchange of spin-2 tower. + _ e Han, Lykken, Zhang, 1998 Spin-2 mediated angular distributions. q Σ (n) G Hewett, 1998 _ q e • Black hole production for √ s ≫ M F . Giddings, Thomas, 2001 Dimopoulos, Landsberg, 2001 - Potentially spectacular signals: energetic multi-jets, leptons, . . . . - Under debate. e.g. Meade, Randall, 2007: 2 → 2 quantum gravity effects more likely at the LHC.

  6. LED: Current Bounds and Future Prospects • Collider limits: 1.6 1.6 Jets/ γ + E T / CDF II Jet/ + E γ T Lower Limit (TeV) Lower Limit (TeV) -1 CDF II + E (2.0 fb ) 1.4 1.4 γ T -1 CDF II Jet + E (1.1 fb ) CDF Collaboration (T. Aaltonen et al.), T LEP Combined 1.2 1.2 Phys.Rev.Lett.101:181602,2008 1 1 0.8 0.8 D D M M 0.6 0.6 2 2 2 3 3 4 4 5 5 6 6 [TeV] expected limit Number of Extra Dimensions Number of Extra Dimensions 1.8 observed limit D 1.6 M -1 CDF 2.0 fb limit 1.4 LEP combined limit 1.2 1 D ∅ Collaboration; γ + E / 0.8 D ∅ Note 5729-CONF, 2008 0.6 0.4 -1 DØ, Run II preliminary 2.7 fb 0.2 0 2 3 4 5 6 7 8 Number of Extra Dimensions

  7. • Cosmology and Astrophysics: Arkani-Hamed, Dimopoulos, Dvali, 1998 - Cosmology: Typically T reheat < ∼ 1 GeV for M F ∼ 1 TeV. - SN 1987A, energy loss: M F > ∼ 50 TeV for n = 2. Cullen, Perelstein, 1998 - Neutron star, excess heat from KK-could: M F > ∼ 700(30) TeV, n = 2(3). Hannestad, Raffelt, 2001 & 2003 • 5 σ LHC reach: Dimuon channel Kabachenko, Miagkov, Zenin, ATL-PHYS-2001-012 I. Belotelov et al. , CMS Note 2006/076

  8. Universal Extra Dimensions (UED) Appelquist, Cheng, Dobrescu, 2000 • All SM in TeV − 1 extra dimensions. • Bulk momentum conservation: 4D KK number preserved. - KK particles not singly produced. - Only loop contributions to EW precision data. - Less stringent bounds on 1 /R . • Chiral fermions via Z 2 orbifolds: KK number → KK-parity. • Compactification: Lorentz violation along extra dimensions. - Loops around compact directions: δm KK . Cheng, Matchev, Schmaltz, 2002 - Lightest KK particle (LKP) stable, dark matter candidate. Cheng, Matchev, Schmaltz, 2002 - Can mimic supersymmetry at the LHC!

  9. UED: Current Status and LHC Prospects • EW precision: Hooper and Profumo, Phys.Rept.453:29-115,2007 Flacke, Hooper, March-Russell, 2006 • Tevatron: CDF, Run IB ...99%, - - - 95% m KK > ∼ 280 GeV Lin, 2005 • LHC Prospects: Cheng, Matchev, Schmaltz, Phys.Rev.D66:056006,2002

  10. Warped Models • The Randall-Sundrum (RS) Model Randall, Sundrum, 1999 - 5D warped model of hierarchy, M 5 ∼ M P . • A slice of AdS 5 spacetime. - Negative constant curvature. - Flat boundaries: Planck (UV) and TeV (IR) branes. - Gravity UV-localized, SM on TeV-brane. - AdS/CFT: Dual geometric picture of strong dynamics. Maldacena, 1997 • Metric: ds 2 = η µν dx µ dx ν − dy 2 . e − 2 ky � �� � warp factor - k < ∼ M 5 and y ∈ [0 , πr c ]. • Redshift: e − kr c π � H 5 � ∼ m W ; IR-localized Higgs, � H 5 � ∼ k . - kπr c ≈ 35; hierarchy via exponentiation.

  11. RS Signatures with SM on the Wall • TeV-scale tower of KK gravitons. - KK masses m n = x n ke − kπr c H.D., Hewett, Rizzo, 1999 x n = 3 . 83 , 7 . 02 , . . . e + e − → µ + µ − - Coupling to SM-brane: ∼ TeV − 1 . - KK graviton spin-2 resonances. - Decay into e + e − , γγ , . . . . - Distinct signature. • Stabilized geometry → Radion scalar Goldberger, Wise, 1999 - Typically lighter than KK modes. - Couplings similar to Higgs. - Can mix with Higgs through curvature-scalar coupling. Cs´ aki, Graesser, Kribs, 1999

  12. Tevatron Bounds and LHC Prospects CDF Collaboration (Aaltonen et al. ); di-muon channel Phys.Rev.Lett.102:091805,2009 m G > 921 GeV for k/M P l = 0 . 1 ; 2.3 fb − 1 D0 Collaboration (Abazov et al. ) Phys.Rev.Lett.100:091802,2008 ) (pb) ) (pb) SE Median 68% of SE 95% of SE µ µ µ µ Data → → k/M = 0.01 BR(G* BR(G* -1 -1 10 10 Pl k/M = 0.015 Pl k/M = 0.025 Pl k/M = 0.035 × × Pl σ σ k/M = 0.05 95% C.L. Limits on 95% C.L. Limits on Pl k/M = 0.07 Pl k/M = 0.1 Pl -2 -2 10 10 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 1.2 1.2 1.4 1.4 M M (TeV) (TeV) G* G* ( γγ , e + e − )

  13. • ATLAS: 100 fb − 1 , 3.5 TeV for k/M P ≃ 0 . 1. Allanach et al. , JHEP 0212:039,2002 k =0.01 M 100 100 Pl (TeV) (TeV) + - G e e → ( .B) ∆ σ 90 90 σ .B π π Λ Λ 80 80 20% 70 70 10% 60 60 5% k =0.02 50 50 M Pl 1% 40 40 k =0.03 M 30 30 Pl k =0.05 20 20 M Pl 10 10 Belotelov et al. , CMS Note 2006/104 0 0 0 0 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000 Graviton Mass (GeV) Graviton Mass (GeV) • CMS: 100 fb − 1 , 4 TeV for k/M P ≃ 0 . 1.

  14. The RS Model with 4D SM (1999) Pros : • Natural Planck-weak hierarchy. • Striking signals. Cons : • Dangerous operators: Large IR cutoff-scales → little hierarchy. • Flavor still a mystery.

  15. SM Flavor from a Warped Bulk • 5D fermion masses, m/k ∼ 1 → localization. Grossman, Neubert, 1999 - UV(IR)-localization (overlap with Higgs) → Light (heavy) fermion. - UV-localization: Large effective cutoff scales. Gherghetta, Pomarol, 2000 ∴ Unwanted light flavor operators suppressed. • Modified KK couplings. - Gauge KK couplings: ( kπr c ≈ 35) UV-brane ( e.g. e , u ): ∼ g/ √ kπr c IR-brane ( e.g. H , t R ): ∼ g √ kπr c 5D Warped Spacetime Planck - Graviton KK couplings in ∼ TeV − 1 : Gauge Field Light fermions: ∼ Yukawa. IR-brane ( e.g. H , t R ): ∼ 1. Light Fermion Gauge fields ( g , γ ): ∼ 1 / ( kπr c ). Higgs Heavy Fermion Graviton th 5 Dimension • Collider Signals: more challenging. - Important production and decay channels suppressed.

  16. Constraints on Warped Hierarchy/Flavor Models • Control δT : 5D custodial G c = SU (2) L × SU (2) R × U (1) X . Agashe, Delgado, May, Sundrum, 2003 • Zb ¯ b : G c × Z 2 Agashe, Contino, Da Rold, Pomarol, 2006 • Gauge KK mass m KK > ∼ 2 − 3 TeV. Carena, Pont´ on, Santiago, Wagner, 2007 • KK gluon exchange contribution to ǫ K : Agashe, Perez, Soni, 2004 Csaki, Falkowski, Weiler, 2008 • m KK > ∼ 20 TeV; O (30%) uncertainty Further 5D flavor structure for m KK ∼ TeV. E.g. Fitzpatrick, Perez, Randall, 2007

  17. Collider Signals and Realistic Bulk Flavor • The basic RS signals need to be revisited. Agashe, Belyaev, Krupovnickas, Perez, Virzi, 2006 • KK gluons: Lillie, Randall, Wang, 2007 - Production from light quark initial states, suppressed. - Decay mostly to t ¯ t , Γ KK ∼ m KK / 6. - Top-polarization (different t L and t R KK gluon couplings) a handle. - LHC reach 3-4 TeV with 100 fb − 1 . • Limits on narrow t ¯ t resonances: 4 3.5 Expected Limit (95% C.L.) ) [pb] CDF Collaboration (T. Aaltonen et al. ) 1 Expected Limit ± σ (995 pb − 1 ) Phys.Rev.D77:051102,2008 t 3 t Observed Limit (95% C.L) → Z’)(Z’ RS KK gluon ( Γ = 0.17M) 2.5 Topcolor Leptophobic Z’ → Sequential Z’ (k =1.3) ⋆ Light t 1 ( SU (2) L × SU (2) R × Z 2 models): 2 p (p σ Upper Limit on 1.5 - Favored by EW data. 1 Carena, Pont´ on, Santiago, Wagner, 2006 0.5 - Larger Γ KK , reduced BR( g 1 → t ¯ t ). 0 500 600 700 800 900 Carena, Medina, Panes, Shah, Wagner, 2008 2 Mass of t t Resonance [Gev/c ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend