in interference experiments
play

in interference experiments Izabella Lovas EQP seminar 2014.12.01. - PowerPoint PPT Presentation

Full statistics of density ripples in interference experiments Izabella Lovas EQP seminar 2014.12.01. References Dissertation of Adilet Imambekov Schumm et al., Nature Physics 1, 57 (2005) Hadzibabic et al., Nature 441, 1118


  1. Full statistics of density ripples in interference experiments Izabella Lovas EQP seminar 2014.12.01.

  2. References • Dissertation of Adilet Imambekov • Schumm et al., Nature Physics 1, 57 (2005) • Hadzibabic et al., Nature 441, 1118 (2006) • Gritsev et al., Nature Physics 2, 705 (2006) • Imambekov et al., Phys. Rev. A 77, 063606 (2008) • Kitagawa et al., New J. Phys. 13, 073018 (2011)

  3. Content • Low dimensional gases • Interference experiment with paralell low dimensional condensates interference fringes • Distribution of fringe amplitude: - Strong and weak interaction limits - Numerical results • Particle number distribution in time of flight measurements

  4. Introduction Low dimensional gases: enhanced phase fluctuations quasi-condensate regime: suppressed density fluctuations, large phase fluctuations Experimental realization: anisotropic harmonic trap Investigation of phase fluctuations: interference measurements

  5. Experimental setup paralell condensates pattern integrated along direction x meandering structure because interference of phase fluctuations pattern

  6. Experimental results

  7. Origin of interference picture propagation for time t localized particle density measurement              x ,0 a x d / 2 a x d / 2 1 2    i /2 a a e complex coefficients 1,2 1,2 2 p    dp    i t     ipx ipd /2 ipd /2 , 2 m x t e e a e a e  1 2 2     m md   2   2  2        x t , a a 2 a a cos x  1 2 1 2     t t

  8. Characteristics of interference fringes Experimentally measured density profiles fitted as initial separation     cos md            f x z ,  1 c x z x      t Gaussian envelope time of flight relative phase of condensates 2 1      L /2  Integrated pattern: x i x dxc x e 2  L L /2 x x reduction of contrast with increasing integration length BKT transition can be detected ladder operators of the condensates  Analogous quantity: a a 1 2   2       L 2  ˆ † Random variable: L dxa x a x 1 2 0

  9. Calculation of momenta annihilation operators of the two condensates Ignoring shot noise terms: L L L L                   2 2   † †  † ˆ L dx dx a x a x a x a x dx dx a x a x 1 2 1 1 2 2 1 2 2 1 1 2 1 2 0 0 0 0 identical condensates Higher momenta: L L           2    2 n      ˆ † † L ... dx ... dx dx ... dx a x ... a x a x ... a x 1 n 1 n 1 n 1 n 0 0     ˆ fluctuating phase    ˆ i x Luttinger liquid theory: a x e homogeneous density       † a x a x           i j , i j  † † ... ... a x a x a x a x         1 n 1 n     † † a x a x a x a x   i j i j i j i j

  10. Calculation of momenta 1/2 K    healing       ˆ ˆ    i x y   Correlations for OBC:  h length e     x y    2 n       ˆ 2 n 2 1/ K 2 1/ K L A Z , A L 0 2 n 0 h Luttinger 1/ K     1 1 u u v v parameter      i j i j i j i j Z ... du ... dv 2 1   n n u v 0 0 i j , i j            1 1 1     G u u , G v v , G u v ,  i j i j i j   K i j i j i j , ... du ... dv e 1 n 0 0     • OBC (as before): G x y , log x y finite T can be     1 treated as well      • PBC:   G x y , log sin x y   

  11. Probability density function PDF   2  ˆ    L Z        n 2 n , d W   n 2  ˆ Z L 2 0 Z    Weak interaction limit: 2 n K , 1 n Z 2     W      narrow peak 1 1 1       1/ K  Tonks-Girardeau limit: K 1, Z dx dy x y 2 0 0 1 Z       n 2 n n ! d e n Z 2 0   e     exponential distribution W

  12. Physical interpretation of limiting distributions Weak interactions: phase coherence length >> system size constant relative phase along the condensates, perfect interference pattern  Strong interactions: phase coherence only over length h L  independent pairs of condensates with random phase h Interference: mean displacement of a random walk random vectors of equal length exponential distribution

  13. Hubbard-Stratonovich transformation 1             Eigenvalue equation: dyG x y , y G f x f f 0             Spectral decomposition: G x y , G f x y f f f         2    G f           n n 2 2 1 1             u v u v f i f i f i f i   f 2 K  i 1 i 1  Z ... du ... dv e 2 n 1 n 0 0  1    2    2 Identity: 2 i x x 2 e dxe  2        decoupling of terms with different u , v f i f j

  14. Probability density function    2 2   t dt e f             n n f    Z g t g t     2 n f f   f 1 2          G f G f       2      1   t x x     f f f f 2 K K   g t dxe f 0              Negative eigenvalues of G f g t g t f f    2 2   t dt e f         2     f         W g t       f   f 1 2   Numerical evaluation: Monte Carlo method

  15. Numerical results T  temperature 0 OBC PBC K  3 K  5 K  2

  16. Distribution in weak interaction limit     W      narrow peak 1     K   eigenfunctions of G(x,y) Rescaled variable: x 1           2sin 2 , 2 cos 2 f x fx fx PDF of for PBC: x   1        K  2 2 1 0 1 t t 2  1, f 2, f f 1 2 Kf Gaussian random variables x random variable: Gumbel distribution distribution in extreme value statistics Rare phase fluctuations dominate the interference picture.

  17. Outlook d  Time of flight measurement, dimensional BEC 1 distribution of particle number in a cell around R    Gaussian approximation:           2  2    † ˆ ˆ ˆ x R 2 R n R , R dxe x t , x t ,    dk      ˆ ˆ ik x x t , e c t  k 2       2 ˆ ˆ i k t 2 m Free evolution during expansion: 0 c t e c k k     t    † ˆ ˆ Luttinger liquid theory momenta of 0: x ,0 x ,0 1 2 Expression for PDF using Hubbard-Stratonovich transformation numerical evaluation: Monte Carlo method

  18. Summary • Quasi-condensate phase in low dimensional gases • Interference experiment with low dimensional condensates distribution of interference fringes -Weak interactions: converges to a single Dirac-delta peak Gumbel distribution after rescaling - Tonks-Girardeau limit: exponential distribution - Some numerical results • Future calculation: particle number distribution in time of flight measurements

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend