implicit methods and the m3d c 1 approach
play

Implicit Methods and the M3D- C 1 Approach Stephen C. Jardin - PowerPoint PPT Presentation

MHD Simulations for Fusion Applications Lecture 4 Implicit Methods and the M3D- C 1 Approach Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 10 Marseille, France July 22, 2010 1 Outline of Remainder of Lecture Yesterday


  1. MHD Simulations for Fusion Applications Lecture 4 Implicit Methods and the M3D- C 1 Approach Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS ‘10 Marseille, France July 22, 2010 1

  2. Outline of Remainder of Lecture Yesterday Today • Galerkin method • Split implicit time C 1 finite elements • differencing for MHD • Examples • Accuracy, spectral pollution, and • Split implicit time representation of the differencing vector fields • Projections of the split implicit equations • Energy conserving subsets • 3D solver strategy • Examples

  3. 2-Fluid MHD Equations: ∂ + ∇ • n = ( V ) 0 continuity n ∂ t ∂ B = −∇× ∇ = μ = ∇× E i B 0 J B Maxwell 0 ∂ t ∂ V + •∇ + ∇ = × − ∇ + μ ∇ 2 ( V V ) J B i Π V momentum nM p ∂ i G V t 1 ( ) + × = η + × − ∇ E V B J J B Ohm's law p e ne ∂ ⎛ ⎞ 3 3 p + ∇ = − ∇ + η −∇ + + 2 i V i V i q electron energy e ⎜ ⎟ p p J Q S Δ ∂ 2 ⎝ 2 e ⎠ e e F e t ∂ ⎛ ⎞ 3 3 p 2 + ∇ = − ∇ + μ ∇ −∇ − + i V i V i q ion energy i ⎜ ⎟ p p V Q S Δ ∂ i i i Fi 2 ⎝ 2 ⎠ t μ viscosity V fluid velocity number density n Idea l MHD η resistivity electron pressure Β magnetic field p e Resistive MH D q ,q heat fluxes ion pressure J current density p i e i 2- flui d MHD equipartition ≡ + Q E electric field p p p Δ e i μ permeability ≡ ρ 3 mass density electron charge e nM 0 i

  4. The split-implicit time advance 4

  5. Consider a simple 1-D Hyperbolic System of Equations (Wave Equation) ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ + − + − + − 1 1 1 n n n n n n u u v v v v + − + − = θ 1/2 1/2 + − θ 1/2 1/2 j j ⎢ j j j j ⎥ ⎜ ⎟ (1 ) ⎜ ⎟ c ⎜ ⎟ ⎜ ⎟ δ δ δ ⎢ ⎥ t x x ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ + − + − + − 1 1 1 n n n n n n v v u u u u + + + + 1/2 1/2 = θ 1 + − θ 1 ⎢ ⎥ j j ⎜ j j ⎟ (1 ) ⎜ j j ⎟ c ⎜ ⎟ ⎜ ⎟ δ δ δ ⎢ ⎥ t ⎝ x ⎠ ⎝ x ⎠ ⎣ ⎦ Substitute from second equation into first: ⎡ ⎤ ⎛ + + + ⎞ ⎛ ⎞ ⎛ ⎞ 1 − 1 + 1 − + − 2 2 n n n n n n n n u u u u u u v v + − + − + − + 1 = + δ 2 θ 2 1 1 + θ − θ 1 1 + δ 1/2 1/2 ⎢ ⎥ ( ) ⎜ j j j ⎟ (1 ) ⎜ j j j ⎟ ⎜ j j ⎟ n n u u tc tc ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ δ δ δ 2 2 j j ⎢ ⎥ x x x ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ δ ( ) ( ) tc ⎡ ⎤ + + + = + θ − + − θ − 1 1 1 (1 ) n n n n n n v v u u u u ⎣ ⎦ + + + + 1/2 1/2 δ 1 1 j j j j j j x These two equations are completely equivalent to those on the previous page, but can be solved sequentially! Only first involves Matrix Inversion … Diagonally Dominant 5

  6. An alternate derivation: ∂ ∂ u v ∂ ∂ ∂ = ⎡ ⎤ u v c = + θδ n ∂ ∂ c v t ⎢ ⎥ t x ∂ ∂ ∂ ⎣ ⎦ t x t Expand RHS in Taylor ∂ ∂ v u = ∂ ∂ ∂ ⎡ ⎤ series in time to time- v u c = + θδ n ∂ ∂ c u t ⎢ ⎥ t x ∂ ∂ ∂ center ⎣ ⎦ t x t 6

  7. An alternate derivation: ∂ ∂ u v ∂ ∂ ∂ = ⎡ ⎤ u v c = + θδ n ∂ ∂ c v t ⎢ ⎥ t x ∂ ∂ ∂ ⎣ ⎦ t x t Expand RHS in Taylor ∂ ∂ v u = ∂ ∂ ∂ ⎡ ⎤ series in time to time- v u c = + θδ n ∂ ∂ c u t ⎢ ⎥ t x ∂ ∂ ∂ center ⎣ ⎦ t x t Substitute from second ⎡ ⎤ ∂ ∂ ⎛ ∂ ∂ ⎞ ⎡ ⎤ u u = + θδ + θδ n n ⎢ ⎥ c v t c ⎜ u t ⎟ ⎢ ⎥ equation into first ∂ ∂ ∂ ∂ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦ t x x t ∂ ∂ ∂ ⎡ ⎤ v u = + θδ n c u t ⎢ ⎥ ∂ ∂ ∂ ⎣ ⎦ t x t 7

  8. An alternate derivation: ∂ ∂ u v ∂ ∂ ∂ = ⎡ ⎤ u v c = + θδ n ∂ ∂ c v t ⎢ ⎥ t x ∂ ∂ ∂ ⎣ ⎦ t x t Expand RHS in Taylor ∂ ∂ v u = ∂ ∂ ∂ ⎡ ⎤ series in time to time- v u c = + θδ n ∂ ∂ c u t ⎢ ⎥ t x ∂ ∂ ∂ center ⎣ ⎦ t x t Substitute from second ⎡ ⎤ ∂ ∂ ⎛ ∂ ∂ ⎞ ⎡ ⎤ u u = + θδ + θδ n n ⎢ ⎥ c v t c ⎜ u t ⎟ ⎢ ⎥ equation into first ∂ ∂ ∂ ∂ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦ t x x t ∂ ∂ ∂ ⎡ ⎤ v u = + θδ n c u t ⎢ ⎥ ∂ ∂ ∂ ⎣ ⎦ t x t Use standard centered difference in time: ⎡ ⎤ ⎡ ⎤ ∂ ∂ ∂ 2 2 − θ δ + = + θ − θ δ + δ 2 2 2 1 2 2 1 ( ) 1 (1 )( ) n n n ⎢ ⎥ ⎢ ⎥ t c u t c u tc v ∂ 2 ∂ 2 ∂ ⎣ ⎦ ⎣ ⎦ x x x ∂ ∂ ⎡ ⎤ + = + δ θ + + − θ 1 1 (1 ) n n n n v v tc u u ⎢ ⎥ ∂ ∂ ⎣ ⎦ x x 8

  9. An alternate derivation: ∂ ∂ u v ∂ ∂ ∂ = ⎡ ⎤ u v c = + θδ n ∂ ∂ c v t ⎢ ⎥ t x ∂ ∂ ∂ ⎣ ⎦ t x t Expand RHS in Taylor ∂ ∂ v u = ∂ ∂ ∂ ⎡ ⎤ series in time to time- v u c = + θδ n ∂ ∂ c u t ⎢ ⎥ t x ∂ ∂ ∂ center ⎣ ⎦ t x t Substitute from second ⎡ ⎤ ∂ ∂ ⎛ ∂ ∂ ⎞ ⎡ ⎤ u u = + θδ + θδ n n ⎢ ⎥ c v t c ⎜ u t ⎟ ⎢ ⎥ equation into first ∂ ∂ ∂ ∂ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦ t x x t ∂ ∂ ∂ ⎡ ⎤ v u = + θδ n c u t ⎢ ⎥ ∂ ∂ ∂ ⎣ ⎦ t x t Use standard centered difference in time: ⎡ ⎤ ⎡ ⎤ ∂ ∂ ∂ 2 2 − θ δ + = + θ − θ δ + δ 2 2 2 1 2 2 1 ( ) 1 (1 )( ) n n n ⎢ ⎥ ⎢ ⎥ t c u t c u tc v ∂ 2 ∂ 2 ∂ ⎣ ⎦ ⎣ ⎦ x x x ∂ ∂ ⎡ ⎤ + = + δ θ + + − θ 1 1 (1 ) n n n n v v tc u u ⎢ ⎥ ∂ ∂ ⎣ ⎦ x x This is the same operator as before when centered spatial differences used 9

  10. W (next 3 vgs) δ

  11. Linear ideal MHD response can be analyzed with δ W approach ∂ ξ let = V introduce a displacement vector ξ ∂ t linearize equations about =0 V ∂ 2 ξ 1 1 ( ) ( ) ρ + ∇ = ∇× × + ∇× × B B B B p 1 1 1 ∂ μ μ 2 t 0 0 ( ) = ∇× × B ξ B 1 2 ( ) + ∇ = − ∇ i ξ i ξ p p p 1 3 or, ∂ 2 ξ ρ = F ( ) ξ Linearized equation of motion ∂ 2 t 1 ( ) ( ) ( ) Ideal MHD = ⎡ ∇× × + ∇× × ⎤ + ∇ ∇ + ∇ i i F ξ ( ) B Q Q B ξ 5 ξ p p ⎣ ⎦ μ 3 operator 0 ( ) ≡ = ∇× × Q B ξ B 1

  12. δ W is the potential energy for a given displacement field ∂ 2 ξ ρ = F ξ ( ) ∂ 2 t 1 ( ) ( ) ( ) μ ⎡ ⎤ = ∇× × + ∇× × + ∇ ∇ + ∇ F ξ ( ) B Q Q B ξ i i ξ 5 ⎣ ⎦ p p 3 0 ( ) ≡ = ∇ × × Q B ξ B 1 x e ω = † Assume ( , ) ξ ξ ( ) and take dot product with - ξ , i t 1 x t 2 and integrate over volume to get perturbed energy ∫ ∫ ρω τ = − τ ≡ δ 2 2 † † 1 ξ 1 ξ F ξ i ( ) ( ξ ξ , ) d d W 2 2 δ < → if 0 for any displacement field ξ instabilit y W

  13. The plasma motion will be such as to minimize δ W This is the term associated with the fast wave…it ∇ ≅ − i ξ 2 ξ i κ ~ 0 is positive definite with a large multiplier. Any ⊥ ⊥ unstable plasma motion will make this term small [ ] ⎡ ⎤ 2 2 + ∇ + + ∇ 2 2 1 Q 1 i ξ 2 ξ i κ 5 i ξ B p ∫ ⊥ ⊥ ⊥ ⎢ μ μ ⎥ 3 δ = τ 1 0 0 W d ( )( ) 2 ⎢ ⎥ − ∇ − σ × 2 ξ i κ ξ i ξ B Q i p ⎣ ⎦ ⊥ ⊥ ⊥ ⊥ = b B / unit vector in direction of field B = ∇ κ b i b curvature of magnetic field σ = 2 J B i / parallel current density B ( ) = ∇× × Q ξ B perturbed magnetic field = Q perpendicular component of Q ⊥ = ξ perpendicular component of ξ ⊥

  14. Now apply the split implicit advance to the basic 3D (ideal) MHD equations: 1 [ ] Ideal MHD Equations for velocity, � ρ = ∇× × −∇ V B B p 0 μ magnetic field, and pressure: 0 [ ] � = ∇× × B V B Symmetric Hyperbolic System = − ∇ − γ ∇ � V i i V p p p 7-waves 14

  15. Now apply the split implicit advance to the basic 3D (ideal) MHD equations: 1 [ ] Ideal MHD Equations for velocity, � ρ = ∇× × −∇ V B B p 0 μ magnetic field, and pressure: 0 [ ] � = ∇× × B V B Symmetric Hyperbolic System = − ∇ − γ ∇ � V i i V p p p 7-waves 1 ( ) ( ) ( ) � � � ⎡ ⎤ ρ = ∇× + θδ × + θδ −∇ + θδ � V B B B B t t p tp ⎣ ⎦ 0 μ 0 Taylor Expand in ( ) � � ⎡ ⎤ = ∇× + θδ × B V V B t ⎣ ⎦ Time as before ( ) ( ) � � = − + θδ ∇ − γ ∇ + θδ � V V i i V V p t p p t 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend