i n f o r m a t i o n t r a n s m i s s i o n c h a p t e
play

I n f o r m a t i o n T r a n s m i s s i o n - PowerPoint PPT Presentation

I n f o r m a t i o n T r a n s m i s s i o n C h a p t e r 4 , C h a n n e l s OVE EDFORS Electrical and information technology L e a r n i n g o u t c o m e s A f t e r t h i s


  1. I n f o r m a t i o n T r a n s m i s s i o n C h a p t e r 4 , C h a n n e l s OVE EDFORS Electrical and information technology

  2. L e a r n i n g o u t c o m e s ● A f t e r t h i s l e c t u r e t h e s t u d e n t s h o u l d – u n d e r s t a n d t h e b a s i c p r o p e r t i e s o f w i r e d c h a n n e l s , s u c h a s c a b l e s a n d o p t i c a l fi b e r s , – k n o w t h e b a s i c p r o p e r t i e s o f w i r e l e s s c h a n n e l s , i n c l u d i n g p r o p a g a t i o n l o s s i n f r e e s p a c e a n d a n t e n n a g a i n s , – u n d e r s t a n d h o w n o i s e e n t e r s t h e s y s t e m a n d h o w i t i s c h a r a c t e r i z e d , – u n d e r s t a n d t h e b a s i c p r i n c i p l e s o f h o w m o v e m e n t s a n d m u l t i p l e w i r e l e s s p r o p a g a t i o n p a t h s c r e a t e D o p p l e r e f f e c t s a n d f a d i n g ( v a r i a t i o n s i n s i g n a l s t r e n g t h ) , a n d – b e f a m i l i a r w i t h t h e p r i n c i p l e o f t h e m a g n e t i c r e c o r d i n g c h a n n e l ( f o r s t o r i n g d a t a ) . O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 2

  3. Wh e r e a r e w e i n t h e B I G P I C T U R E ? Lecture relates to pages Models of transmission and 105–117 in textbook. storage media. O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 3

  4. Wi r e s , c a b l e s a n d fi b e r s » Coaxial cable » Twisted pair » Used for high frequency » Standard telephone line transmission » Shielded and controlled properties O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 4

  5. Mo d e l o f a t r a n s m i s s i o n l i n e ( w i r e ) Model of short (unit length) section of line: - resistive loss - inductance from wires - “short circuit” resistance - capacitance between wires Model of entire wireline ... unit length sections in series O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 5

  6. Wi r e s , c a b l e s a n d fi b e r s • Wires and cables have quite high attenuation • Where the propagation “constant” is given by • Sinusoid in – sinusoid out, but with an attenuation and a phase shift NOTE: Due to something called the skin effect , the resistance R is frequency dependent at high frequencies, so that O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 6

  7. A t t e n u a t i o n o f a w i r e p a i r ( p h o n e l i n e ) • For longer wire lengths the attenuation is huge Received power [dB] at higher frequencies. • They are already in place, so let’s use them… Frequency [Hz] O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 7

  8. P r o p a g a t i o n i n a fi b e r Fibers have low attenuation (< 0.5 dB/km). Reflections inside the fiber lead to dispersion – the light pulse will Smear out in time. O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 8

  9. R a d i o C h a n n e l s – F r e e s p a c e O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 9

  10. F r e e - s p a c e l o s s An isotropic antenna radiates equally in If we assume RX antenna to be isotropic: all directions. d Attenuation between two isotropic antennas in free space is (free-space loss): O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 0

  11. A n t e n n a g a i n • An antenna will collect its power from an effective area A . The larger antenna, the more power it will collect • Similarly, it will focus its transmit power in a certain direction where the power density then will be higher O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 1

  12. F r e e - s p a c e l o s s , F r i i s ’ l a w Received power, with antenna gains G TX and G RX : If we write the expression in dB ... In free space, the received power decays with distance at a rate of 20 dB/decade O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 2

  13. N o i s e s o u r c e s The total noise situation in a receiver depends on several noise sources Noise picked up Wanted by the antenna signal Output signal Analog Detector with requirement circuits on quality Thermal noise in circuits O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 3

  14. R e c e i v e r n o i s e : N o i s e s o u r c e s ( 1 ) The noise power spectral density of a noise source is usually given in one of the following ways: 1) Directly [W/Hz] 2) Noise temperature [Kelvin] The noise power N is also determined by the bandwidth B of the receiver Noise Here k is Boltzmann’s constant (1.38x10 -23 W/Hz) and T K is the is the temperature of the noise source in Kelvin. O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 4

  15. R e c e i v e r n o i s e : N o i s e s o u r c e s ( 2 ) Antenna example N a Model Noise temperature Noise free of antenna 1600 K antenna Power spectral density of antenna noise is Multiply with bandwidth to get noise power O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 5

  16. D i s t r i b u t i o n o f t h e n o i s e ● T h e n o i s e i s m o s t o f t e n a s s u m e d t o h a v e a G a u s s i a n d i s t r i b u t i o n ● Wi t h t h i s d i s t r i b u t i o n i t i s p o s s i b l e t o c a l c u l a t e t h e p r o b a b i l i t y t h a t a n o i s e s a m p l e e x c e e d s a c e r t a i n l e v e l . O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 6

  17. Mu l t i - p a t h p r o p a g a t i o n , T w o w a v e s Wave 1 Wave 1 + Wave 2 Wave 2 At least in this case, we can see that the interference pattern changes on the wavelength scale. O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 7

  18. S m a l l - s c a l e f a d i n g Illustration of interference pattern from above Received power [log scale] Movement A B Position Transmitter A B Reflector O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 8

  19. S m a l l - s c a l e f a d i n g - R a y l e i g h f a d i n g Amplitude distribution when mean amplitude is 1, 2, 4, and 10. O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 1 9

  20. D o p p l e r s h i f t s Frequency of received signal: v r     f f 0 c where the Doppler shift is v       f c r cos Receiving antenna moves with 0 speed v r at an angle θ relative to the propagation direction The maximal Doppler shift is of the incoming wave, which v has frequency f 0 .   f c max 0 O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 2 0

  21. Mo r e t h a n o n e i n c o m i n g w a v e Incoming waves from several Spectrum of received signal directions when a f 0 Hz signal is transmitted. (relative to movement or RX) RX movement 2 1 3 2 4 1 RX 4 3 All waves of equal strength in this example, for simplicity. O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 2 1

  22. Ma g n e t i c r e c o r d i n g • Store magnetic field with different orientation Figure source: http://hyperphysics.phy-astr.gsu.edu O v e E d f o r s E I T A 3 0 - C h a p t e r 4 ( P a r t 1 ) 2 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend