higher order topological insulators
play

Higher order topological insulators A paradigm for topological - PowerPoint PPT Presentation

Titus Neupert Yukawa Institute, Kyoto, November 03, 2017 Higher order topological insulators A paradigm for topological states of matter ( M ) = (the boundary of a boundary is empty) works when things are su ffi ciently smooth.


  1. Titus Neupert Yukawa Institute, Kyoto, November 03, 2017 Higher order topological insulators

  2. A paradigm for topological states of matter ∂ ( ∂ M ) = ∅ (the boundary of a boundary is empty) … works when things are su ffi ciently smooth. Crystals have no smooth surface! arXiv:1708.03636 Frank Schindler Maia Vergniory Zhijun Wang Ashley Cook Stuart Parkin Andrei Bernevig (U Zurich) (Donostia) (Princeton U) (U Zurich) (Max Planck Halle) (Princeton U)

  3. Topological Insulators Bulk-boundary correspondence: E gapless Dirac cones, gapped bulk band structure k 300K 10K d 3 k  � A a @ b A c + i2 Z Topological invariant: ✓ = � ✏ abc (2 ⇡ ) 3 tr 3 A a A b A c A a ; n,n 0 = � i h u n | ∂ a | u n 0 i with time-reversal symmetry θ = 0 , π Topological invariant with inversion: k z Y product over inversion eigenvalues ξ k = ( − 1) ν k y at time-reversal invariant momenta k ∈ TRIM k x

  4. Superconducting and magnetic TI surface G = U ( 1 ) o Z T non-interacting SPT phase: 2 Dirac cone + s-wave pairing: TR breaking: anomalous QHE U(1) breaking: TRS SC with fractional conductivity Majorana in vortex without fractionalization σ xy = 1 / 2 Fu Kane Mele PRL 07 Fu Kane PRL 08 TI TI

  5. Domain wall modes a) chiral fermion b) chiral Majorana mode - - - -- - - - - - - - - - - - - - - - - - - SC - M = ↑ - 1 - - - - - - - - - - - - - 1 - - - - - - - - M = ↓ M = ↓ - - - - 2 - - - - - - - - - - - - 3 - 1 - - - - - - - - - - - - 1 - - - - - - - - - 3 - - - - - - - - - - - - - - - - - - - - 3 1 - - - - - - - - - - - - 1 - - - - - 3 - - - - - - - 1 - - - - - - - - 1 2 - -- - - N p = 12 1 1 - - N p = 11 1 -- M M 1 - - − 10 − 8 − 6 − 4 − 2 0 2 − 6 − 5 − 4 − 3 − 2 − 1 0 10 - 5 0

  6. Topology from Wilson loops k z Z 2 π � d k z h u m ( ~ k ) | @ k z | u n ( ~ W nm ( k x , k y ) = exp k ) i k y 0 k x occupied band unitary operator in filled eigenstates band subspace Define ‘Wilson loop Hamiltonian’ W ( k x , k y ) = exp[ − i H W ( k x , k y )] λ ( W ) π k y Resembles surface Hamiltonian with qualitatively identical gapless spectrum (single Dirac cone) k x − π λ ( W ) π Equivalence: eigenvalues of Wilson loop and projected position operator ˆ x ˆ P ˆ P − π

  7. Topological crystalline insulators Stabilize more than one Dirac cone by adding crystalline symmetries Mirror symmetry: eigenvalues +i and -i in spinful system eigenstates on the mirror invariant planes in momentum space Mirror Chern number: k z Chern number in +i/-i subspace on the plane Z C ± = 1 ∂ k y A ± z − ∂ k z A ± d 2 k tr ⇥ ⇤ k y y k x =0 / π 2 π ∈ Z C + = − C − Time-reversal symmetry: k x Number of Dirac cones crossing line in surface BZ k y +i k x -i [L. Fu, Phys. Rev. Lett., 2011] k y

  8. Higher-order topological insulators Electric circuit realization arXiv:1708.03647 normalized impedance (d-m)-dimensional boundary components of a d-dimensional system are gapless for m = N , and are generically gapped for m < N 1 2 3 dimension E SSH k 1 TI QHE Mechanical realization, Huber group arXiv:1708.05015 Rest of 2 this talk order [Benalcazar, Bernevig, Hughes Can only happen with 3 Science 357, 61-66 (2017)] spatial symmetries: generalizations of TCIs

  9. Construction of a 2nd order 3D TI Protecting symmetry: C 4 T (breaks T, C 4 individually) surface construction from 3D TI: decorate surfaces alternatingly with outward and inward pointing magnetization, gives chiral 1D channels at hinges Adding C 4 T respecting IQHE layers on surface can change number of hinge modes by multiples of 2 c) Odd number of hinge modes stable against any C 4 T respecting surface manipulation Chern Bulk topological property Z 2 insulator

  10. Construction of a 2nd order 3D TI Protecting symmetry: C 4 T (breaks T, C 4 individually) Bulk construction TI band structure plus (su ffi ciently weak) triple-q ( 𝜌 , 𝜌 , 𝜌 ) magnetic order Toy model with only C 4 T in z -direction ! X X H 4 ( ~ k ) = M + cos k i ⌧ z � 0 + ∆ 1 sin k i ⌧ y � i + ∆ 2 (cos k x − cos k y ) ⌧ x � 0 i i 3D TI T, C 4 breaking term λ ( H C ) Spectrum of column geometry 0 k z 0 2 π π

  11. Topological invariant of a 2nd order 3D TI Same quantization with C 4 T as with T alone: d 4 x E · B θ R Z top = e i is topological invariant θ = 0 , π 8 π 2 ( C 4 T ) 4 = − 1 Di ff erent from existing indices, because Case of additional inversion times TRS , IT, symmetry: k { e i ⇡ / 4 , e − i ⇡ / 4 } ξ ~ k = ± 1 ( IC 4 ) 4 = − 1 use with eigenvalues ξ ~ Due to ‘Kramers’ pairs with same are [ IC 4 , IT ] = 0 ξ ~ k = ± 1 degenerate. Band inversion formula for topological index à la Fu Kane for C 4 T invariant momenta k z ( − 1) ⌫ = Y ξ ~ k ~ k ∈ I ˆ k y Cz 4 ˆ T I ˆ T = { (0 , 0 , 0) , ( π , π , 0) , (0 , 0 , π ) , ( π , π , π ) } k x 4 ˆ C z

  12. Wilson loop topology of a 2nd order 3D TI Wilson-loop based bulk topological characterization Z 2 π � d k z h u m ( ~ k ) | @ k z | u n ( ~ W nm ( k x , k y ) = exp k ) i 0 λ ( H W ) π C 4 T implies Kramers-like degeneracies in Wilson loop spectrum at C 4 T invariant momenta 0 ( k x , k y ) ∈ { (0 , 0) , ( π , π ) } Z 2 Wilson loop winding between these momenta is topological invariant k x , k y − π (0 , 0) (0 , π ) ( π , π ) (0 , 0) ✓Z ( ⇡ , ⇡ ) ◆ ⌫ = 1 X d ~ k � l ( ~ k ) − � l ( ⇡ , ⇡ ) + � i (0 , 0) mod 2 k · @ ~ 2 ⇡ (0 , 0) l

  13. Boundary topology of a 2nd order 3D TI Nested entanglement spectrum Nested Wilson loop spectrum ρ A = Tr B | Ψ ih Ψ | ⌘ 1 x-direction Wilson loop spectrum gapped e − H e Z e k z λ ( H e ) 4 k y entanglement A spectrum is k x 0 B gapped …one more: W is 2x2 matrix with topological Wilson loop of gapped slab k z − 4 0 2 π lower band: log is π spectrum: gapless modes Define: entanglement spectrum of ‘Wilson loop entanglement Hamiltonian Hamiltonian’ 1 e − H e − e ρ e; A 1 = Tr A 2 | Ψ e ih Ψ e | ⌘ Define: Wilson loop of Wilson loop Z e − e [Benalcazar et al., arxiv:1611.07987] λ ( H e − e ) 4 gapless chiral gapless chiral A 1 A 2 hinge modes mode 0 B k z k z − 4 0 2 π π

  14. Gapless surfaces? consider adiabatically inserting a hinge chiral gapless surface turns gapless hinge at some critical angle ! H 4 ( ~ X X k ) = M + cos k i ⌧ z � 0 + ∆ 1 sin k i ⌧ y � i + ∆ 2 (cos k x − cos k y + r sin k x sin k y ) ⌧ x � 0 i i Critical angle nonuniversal , not fixed to particular crystallographic direction. Di ff erent from gapless surfaces of TCIs.

  15. Electromagnetic response Flux insertion in quantum Hall ≡ φ system creates quantized + — dipole ≡ φ + — Flux insertion in chiral higher- order TI creates quantized ≡ φ quadrupole — + + —

  16. 2nd order 3D topological superconductor ! X X H 4 ( ~ k ) = M + cos k i ⌧ z � 0 + ∆ 1 sin k i ⌧ y � i + ∆ 2 (cos k x − cos k y ) ⌧ x � 0 i i has a particle hole symmetry P = τ y σ y K Interpretation: Superconductor with generic dispersion and superposition of two order parameters k,i = i ∆ 1 sin k i d ~ spin triplet, p-wave ∆ 1 Balian-Werthamer state in superfluid Helium-3-B spin singlet d x ² -y ² -wave ∆ 2 superconductor with chiral p + i d Majorana hinge modes

  17. Time-reversal symmetric 2nd order 3D TI Stabilized by mirror symmetries and TRS One Kramers pair of modes on each hinge, like quantum spin Hall edge

  18. Time-reversal symmetric 2nd order 3D TI Can also be defined with C 4 and time- reversal symmetry: Im C 4 eigenvalues Re TRS Kramers pairs ξ = − ξ = + Define 3D Z 2 index independently in each subspace. ξ One nontrivial: 3D Z 2 TI, surfaces are gapless Both nontrivial: 3D higher-order TI, surfaces gapped, edges gapless Both trivial: trivial insulator

  19. Time-reversal symmetric 2nd order 3D TI Surface perturbations: No mirror chiral modes allowed in 2D domain wall boundary boundary A B Mirror x → —x, leaves domain wall y invariant eigenvalue +i x c) eigenvalue —i Not allowed: ? ? ? ? c) Allowed 2D surface perturbations: (2) (1) (3) (2) Number of upmovers of both mirror eigenvalues are equal

  20. Time-reversal symmetric 2nd order 3D TI k y Bending the surface of a topological crystalline insulator k x mirror Chern number = 2 +i -i (upmovers — downmovers) Z with mirror eigenvalue —i n − n + = with time-reversal Z (100) (010) (110) (upmovers — downmovers) Z R with mirror eigenvalue + i One upmover with mirror eigenvalue +i (=mirror Chern number/2) Requires 3D bulk. c) Allowed 2D surface perturbations: (2) (1) (3) (2) Number of upmovers of both mirror eigenvalues are equal

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend