higher connectivity in linear terms as 3 valent graphs
play

Higher connectivity in linear -terms as 3-valent graphs Noam - PowerPoint PPT Presentation

Higher connectivity in linear -terms as 3-valent graphs Noam Zeilberger an update on work-in-progress w/Jason Reed also showcasing some tools by George Kaye SYCO 5 @ bham! 4-sep-2019 [Background] A few views on linear & planar


  1. Higher connectivity in linear λ -terms as 3-valent graphs Noam Zeilberger an update on work-in-progress w/Jason Reed also showcasing some tools by George Kaye SYCO 5 @ bham! 4-sep-2019

  2. [Background] A few views on linear & planar λ -calculus λ x. λ y. λ z.x(yz) λ x. λ y. λ z.x(yz) λ x. λ y. λ z.(xz)y λ x. λ y. λ z.(xz)y x,y ⊢ (xy)( λ z.z) x,y ⊢ (xy)( λ z.z) x,y ⊢ x(( λ z.z)y) x,y ⊢ x(( λ z.z)y)

  3. Classical lambda calculus Raw syntax: t ::= x | t ₁ t ₂ | λ x.t ₁ variable application abstraction Rewriting rules: ( λ x.t ₁ ) t ₂ → β t ₁ [t ₂ /x] t → η λ x.(t x) α -equivalence: names are just placeholders λ x. λ y.x (y x) ≡ α λ y. λ x.y (x y) ≡ α λ a. λ b.a (b a)

  4. Linear lambda calculus free An abstraction λ x.t is said to bind the occurrences of x in t λ y.x (y x) A variable which is not bound by any λ is said to be free bound A term is called linear if every free or bound variable occurs exactly once λ x. λ y. λ z.x (y z) λ x. λ y.x (y x) λ x. λ y. λ z.(x z) y λ x. λ y.x linear! non-linear! Fun fact: β -normalization of linear terms is PTIME-complete (Mairson 2004)

  5. Planar lambda calculus (cf. Abramsky, "T emperley-Lieb Algebra: From Knot Theory to Logic & Computation via QM") A (closed) linear term is called ordered (or planar ) if every variable is used in the order it is bound... λ x. λ y. λ z.x (y z) λ x. λ y. λ z.(x z) y non-ordered! ordered! (The reason why ordered=planar will become clear later.) Open problem: how hard is β -normalization of ordered linear terms?

  6. Linear lambda calculus, take #2 (cf. Hyland, "Classical lambda calculus in modern dress") Untyped linear terms may be naturally organized into a symmetric operad • Λ (n) = set of α -equivalence classes of linear terms in context x ₁ ,...,x ₙ ⊢ t Γ , x ⊢ t ₁ Γ ⊢ t ₁ Δ ⊢ t ₂ Γ , Δ ⊢ t ₁ t ₂ x ⊢ x Γ ⊢ λ x.t ₁ • ∘ᵢ : Λ (m+1) × Λ (n) → Λ (m+n) de fi ned by (linear) substitution Θ ⊢ t ₂ Γ ,x, Δ ⊢ t ₁ Γ , Θ , Δ ⊢ t ₁ [t ₂ /x] • symmetric action S ₙ × Λ (n) → Λ (n) de fi ned by permuting the context Γ ,y,x, Δ ⊢ t Γ ,x,y, Δ ⊢ t Untyped ordered terms form a plain operad: just drop the symmetric action

  7. Linear lambda calculus, take #3 (cf. Lambek, "Deductive systems and categories") T yped linear terms modulo βη may also be seen as a presentation of the free closed symmetric multicategory over a set of atomic types Γ , x : A ⊢ t : B Γ ⊢ t : A ⊸ B Δ ⊢ u : A Γ , Δ ⊢ t u : B x : A ⊢ x : A Γ ⊢ λ x.t : A ⊸ B (A multicategory M is closed if for any pair of objects A,B there is a binary map eval A ⊸ B, A B together with a family of bijections on multi-hom-sets λ : M( Γ ,A ; B) ≅ M( Γ ; A ⊸ B) whose inverse is the operation of post-composition with eval.)

  8. Linear lambda calculus, take #4 (cf. Scott, "Relating theories of the λ -calculus") Combining takes #2 and #3, untyped linear terms may be interpreted as endomorphisms of a re fl exive object in a closed symmetric (2-)multicategory. By "re fl exive object" we mean (with a bit of ambiguity) an object U equipped with an isomorphism/section/adjunction to its space of endomorphisms: app lam With the most liberal de fi nition, the 2-cells app ∘ lam ⇒ id and id ⇒ lam ∘ app model β -reduction and η -expansion.

  9. From re fl exive objects to HOAS Representation of untyped terms using higher-order abstract syntax (in T welf): u : type. app : u -> (u -> u). lam : (u -> u) -> u. t1 : u = lam [x] lam [y] lam [z] app x (app y z). t2 : u = lam [x] lam [y] lam [z] app (app x z) y. t3 : u -> u -> u = [x] [y] app (app x y) (lam [z] z). t4 : u = lam [x] lam [y] app x (app y x). t5 : u -> u = [x] lam [y] x.

  10. From re fl exive objects to string diagrams A compact closed category is a particular kind of closed category in which A ⊸ B ≈ B ⊗ A*. By interpreting re fl exive objects in the graphical language of compact closed (2-)categories, we derive a graphical representation for linear terms. λ @

  11. From re fl exive objects to string diagrams Some examples: lam [x] lam [y] lam [z] app x (app y z) lam [x] lam [y] lam [z] app (app x z) y [x] [y] app (app x y) (lam [z] z) T o play more with these kinds of diagrams, try: https://www.georgejkaye.com/fyp/visualiser.html https://www.georgejkaye.com/fyp/gallery

  12. An idea from the folklore Representing λ -terms this way is an old idea (just under di ff erent names)... Knuth (1970), "Examples of Formal Semantics" Statman (1974), "Structural complexity of proofs" corresponding HOAS: corresponding HOAS: [x] app (lam [y] lam [z] app y z) x lam [x] lam [y] lam [z] app x (app y z)

  13. 67. ( λ a.a) (( λ b.b) (( λ c.c) ( λ d.d))) 100. ( λ a.a) ( λ b. λ c.b ( λ d.d c)) 1. λ a.a 34. λ a.( λ b. λ c.c b) a [Background] [Background] 68. ( λ a.a) (( λ b.b) ( λ c.c ( λ d.d))) 101. ( λ a.a) ( λ b. λ c.(b ( λ d.d)) c) 2. ( λ a.a) ( λ b.b) 35. λ a. λ b.(a b) ( λ c.c) 69. ( λ a.a) (( λ b.b) ( λ c.( λ d.d) c)) 102. ( λ a.a) ( λ b. λ c.(( λ d.d) b) c) 3. λ a.a ( λ b.b) 36. λ a. λ b.(b a) ( λ c.c) 70. ( λ a.a) (( λ b.b) ( λ c. λ d.c d)) 103. ( λ a.a) ( λ b. λ c.( λ d.b d) c) 4. λ a.( λ b.b) a 37. λ a. λ b.a (b ( λ c.c)) 71. ( λ a.a) (( λ b.b) ( λ c. λ d.d c)) 104. ( λ a.a) ( λ b. λ c.( λ d.d b) c) 5. λ a. λ b.a b 38. λ a. λ b.a (( λ c.c) b) 72. ( λ a.a) ((( λ b.b) ( λ c.c)) ( λ d.d)) 105. ( λ a.a) ( λ b. λ c.c (b ( λ d.d))) 6. λ a. λ b.b a 39. λ a. λ b.a ( λ c.b c) 73. ( λ a.a) (( λ b.b ( λ c.c)) ( λ d.d)) 106. ( λ a.a) ( λ b. λ c.c (( λ d.d) b)) 7. ( λ a.a) (( λ b.b) ( λ c.c)) 40. λ a. λ b.a ( λ c.c b) 74. ( λ a.a) (( λ b.( λ c.c) b) ( λ d.d)) 107. ( λ a.a) ( λ b. λ c.c ( λ d.b d)) 8. ( λ a.a) ( λ b.b ( λ c.c)) 41. λ a. λ b.(a ( λ c.c)) b 75. ( λ a.a) (( λ b. λ c.b c) ( λ d.d)) 108. ( λ a.a) ( λ b. λ c.c ( λ d.d b)) 9. ( λ a.a) ( λ b.( λ c.c) b) 42. λ a. λ b.(( λ c.c) a) b 76. ( λ a.a) (( λ b. λ c.c b) ( λ d.d)) 109. ( λ a.a) ( λ b. λ c.(c ( λ d.d)) b) 10. ( λ a.a) ( λ b. λ c.b c) 43. λ a. λ b.( λ c.a c) b 77. ( λ a.a) ( λ b.b (( λ c.c) ( λ d.d))) 110. ( λ a.a) ( λ b. λ c.(( λ d.d) c) b) 11. ( λ a.a) ( λ b. λ c.c b) 44. λ a. λ b.( λ c.c a) b 78. ( λ a.a) ( λ b.b ( λ c.c ( λ d.d))) 111. ( λ a.a) ( λ b. λ c.( λ d.c d) b) 12. (( λ a.a) ( λ b.b)) ( λ c.c) 45. λ a. λ b.b (a ( λ c.c)) The surprising combinatorics 79. ( λ a.a) ( λ b.b ( λ c.( λ d.d) c)) 112. ( λ a.a) ( λ b. λ c.( λ d.d c) b) 13. ( λ a.a ( λ b.b)) ( λ c.c) 46. λ a. λ b.b (( λ c.c) a) 80. ( λ a.a) ( λ b.b ( λ c. λ d.c d)) 113. ( λ a.a) ( λ b. λ c.( λ d.d) (b c)) 14. ( λ a.( λ b.b) a) ( λ c.c) 47. λ a. λ b.b ( λ c.a c) 15. ( λ a. λ b.a b) ( λ c.c) 48. λ a. λ b.b ( λ c.c a) 81. ( λ a.a) ( λ b.b ( λ c. λ d.d c)) 114. ( λ a.a) ( λ b. λ c.( λ d.d) (c b)) 16. ( λ a. λ b.b a) ( λ c.c) 49. λ a. λ b.(b ( λ c.c)) a 82. ( λ a.a) ( λ b.(b ( λ c.c)) ( λ d.d)) 115. ( λ a.a) ( λ b. λ c. λ d.(b c) d) 17. λ a.a (( λ b.b) ( λ c.c)) 50. λ a. λ b.(( λ c.c) b) a 83. ( λ a.a) ( λ b.(( λ c.c) b) ( λ d.d)) 116. ( λ a.a) ( λ b. λ c. λ d.(c b) d) of linear λ -terms 18. λ a.a ( λ b.b ( λ c.c)) 51. λ a. λ b.( λ c.b c) a 84. ( λ a.a) ( λ b.( λ c.b c) ( λ d.d)) 117. ( λ a.a) ( λ b. λ c. λ d.(b d) c) 19. λ a.a ( λ b.( λ c.c) b) 52. λ a. λ b.( λ c.c b) a 85. ( λ a.a) ( λ b.( λ c.c b) ( λ d.d)) 118. ( λ a.a) ( λ b. λ c. λ d.(d b) c) 20. λ a.a ( λ b. λ c.b c) 53. λ a. λ b.( λ c.c) (a b) 86. ( λ a.a) ( λ b.( λ c.c) (b ( λ d.d))) 119. ( λ a.a) ( λ b. λ c. λ d.b (c d)) 21. λ a.a ( λ b. λ c.c b) 54. λ a. λ b.( λ c.c) (b a) 87. ( λ a.a) ( λ b.( λ c.c) (( λ d.d) b)) 120. ( λ a.a) ( λ b. λ c. λ d.b (d c)) 22. λ a.(a ( λ b.b)) ( λ c.c) 55. λ a. λ b. λ c.(a b) c 88. ( λ a.a) ( λ b.( λ c.c) ( λ d.b d)) 121. ( λ a.a) ( λ b. λ c. λ d.(c d) b) 23. λ a.(( λ b.b) a) ( λ c.c) 56. λ a. λ b. λ c.(b a) c 89. ( λ a.a) ( λ b.( λ c.c) ( λ d.d b)) 122. ( λ a.a) ( λ b. λ c. λ d.(d c) b) 24. λ a.( λ b.a b) ( λ c.c) 57. λ a. λ b. λ c.(a c) b 90. ( λ a.a) ( λ b.(( λ c.c) ( λ d.d)) b) 123. ( λ a.a) ( λ b. λ c. λ d.c (b d)) 25. λ a.( λ b.b a) ( λ c.c) 58. λ a. λ b. λ c.(c a) b 91. ( λ a.a) ( λ b.( λ c.c ( λ d.d)) b) 124. ( λ a.a) ( λ b. λ c. λ d.c (d b)) 26. λ a.( λ b.b) (a ( λ c.c)) 59. λ a. λ b. λ c.a (b c) 92. ( λ a.a) ( λ b.( λ c.( λ d.d) c) b) 125. ( λ a.a) ( λ b. λ c. λ d.d (b c)) 27. λ a.( λ b.b) (( λ c.c) a) 60. λ a. λ b. λ c.a (c b) 93. ( λ a.a) ( λ b.( λ c. λ d.c d) b) 126. ( λ a.a) ( λ b. λ c. λ d.d (c b)) 28. λ a.( λ b.b) ( λ c.a c) 61. λ a. λ b. λ c.(b c) a 94. ( λ a.a) ( λ b.( λ c. λ d.d c) b) 127. (( λ a.a) ( λ b.b)) (( λ c.c) ( λ d.d)) 29. λ a.( λ b.b) ( λ c.c a) 62. λ a. λ b. λ c.(c b) a 95. ( λ a.a) ( λ b. λ c.(b c) ( λ d.d)) 128. (( λ a.a) ( λ b.b)) ( λ c.c ( λ d.d)) 30. λ a.(( λ b.b) ( λ c.c)) a 63. λ a. λ b. λ c.b (a c) 96. ( λ a.a) ( λ b. λ c.(c b) ( λ d.d)) 129. (( λ a.a) ( λ b.b)) ( λ c.( λ d.d) c) 31. λ a.( λ b.b ( λ c.c)) a 64. λ a. λ b. λ c.b (c a) 97. ( λ a.a) ( λ b. λ c.b (c ( λ d.d))) 130. (( λ a.a) ( λ b.b)) ( λ c. λ d.c d) 32. λ a.( λ b.( λ c.c) b) a 65. λ a. λ b. λ c.c (a b) 98. ( λ a.a) ( λ b. λ c.b (( λ d.d) c)) 131. (( λ a.a) ( λ b.b)) ( λ c. λ d.d c) 33. λ a.( λ b. λ c.b c) a 66. λ a. λ b. λ c.c (b a) 99. ( λ a.a) ( λ b. λ c.b ( λ d.c d)) 132. ( λ a.a ( λ b.b)) (( λ c.c) ( λ d.d))

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend