high order explicit local time stepping methods for wave
play

High-Order Explicit Local Time-Stepping Methods For Wave Propagation - PowerPoint PPT Presentation

High-Order Explicit Local Time-Stepping Methods For Wave Propagation Marcus Grote Universit e de B ale joint work with: M. Mehlin, T. Mitkova, Univ. de B ale J. Diaz, INRIA, Pau S. Sauter, Univ. de Zurich D. Peter, M. Rietmann, O.


  1. High-Order Explicit Local Time-Stepping Methods For Wave Propagation Marcus Grote Universit´ e de Bˆ ale joint work with: M. Mehlin, T. Mitkova, Univ. de Bˆ ale J. Diaz, INRIA, Pau S. Sauter, Univ. de Zurich D. Peter, M. Rietmann, O. Schenk, USI B. U¸ car, CNRS & ENS-Lyon Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  2. Wave Phenomena Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  3. Adaptive Mesh Refinement geometric features Tohoku fault: mesh generation Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  4. Overcoming Geometry Induced Stiffness Problem Locally refined meshes induce severe stability restrictions for explicit time-stepping schemes. Solutions • Locally implicit (IMEX) schemes e.g. Ascher 1995, Piperno 2006, Verwer 2009, Dolean et al. 2010, Chabassier, Imperiale 2015, Descombes, Lanteri, Moya 2015 • Explicit local time-stepping (LTS) schemes in this talk! • Local exponential integrators Hochbruck, Ostermann 2011 Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  5. High-order Local Time Stepping (LTS) Methods Outline : • The (damped) wave equation • CG, IP-DG and nodal DG FE discretizations • LTS methods: previous work • Runge-Kutta based LTS methods • Multi-level leap-frog based LTS methods • Parallel performance • Concluding remarks Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  6. The (Damped) Wave Equation Model problem (second-order form) u tt + σu t − ∇ · ( c ∇ u ) = f in Ω × (0 , T ) u = 0 on ∂ Ω × (0 , T ) u | t =0 = u 0 , u t | t =0 = v 0 in Ω • Ω ⊂ R d bounded, σ ( x ) ≥ 0, c ( x ) > 0 Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  7. The (Damped) Wave Equation Model problem (second-order form) u tt + σu t − ∇ · ( c ∇ u ) = f in Ω × (0 , T ) u = 0 on ∂ Ω × (0 , T ) u | t =0 = u 0 , u t | t =0 = v 0 in Ω • Ω ⊂ R d bounded, σ ( x ) ≥ 0, c ( x ) > 0 Weak formulation Find u ∈ C 0 (0 , T ; H 1 0 (Ω)) ∩ C 1 (0 , T ; L 2 (Ω)): ∀ v ∈ H 1 � u tt , v � ( H − 1 ,H 1 0 ) + ( σu t , v ) + a ( u, v ) = ( f, v ) , 0 (Ω) , a ( u, v ) = ( c ∇ u, ∇ v ) Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  8. The (Damped) Wave Equation Model problem (second-order form) u tt + σu t − ∇ · ( c ∇ u ) = f in Ω × (0 , T ) u = 0 on ∂ Ω × (0 , T ) u | t =0 = u 0 , u t | t =0 = v 0 in Ω • Ω ⊂ R d bounded, σ ( x ) ≥ 0, c ( x ) > 0 Weak formulation Find u ∈ C 0 (0 , T ; H 1 0 (Ω)) ∩ C 1 (0 , T ; L 2 (Ω)): ∀ v ∈ H 1 � u tt , v � ( H − 1 ,H 1 0 ) + ( σu t , v ) + a ( u, v ) = ( f, v ) , 0 (Ω) , a ( u, v ) = ( c ∇ u, ∇ v ) Energy conservation For σ = 0, f = 0 the energy E [ u ]( t ) := 1 � u t � 2 + a ( u, u ) � � ≡ const. 2 Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  9. Second-order semi-discrete FE formulations • Conforming mass-lumped FEM: ( Cohen-Joly-Roberts-Tordjman, SINUM, 2001 ) � � a ( u, ϕ ) := c ∇ u · ∇ ϕ dx K K ∈T h • IP-DG FEM: ( G.-Schneebeli-Sch¨ otzau, SINUM 2006 ) � � � � a DG ( u, ϕ ) := c ∇ u · ∇ ϕ dx − [ [ ϕ ] ] · { { c ∇ u } } dA K e K ∈T h e ∈E h � � � − [ [ u ] ] · { { c ∇ ϕ } } dA + a [ [ u ] ] · [ [ ϕ ] ] dA e e ∈E h e ∈E h Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  10. The (Damped) Wave Equation Model problem (first-order form, v := u t and w := −∇ u ) v t + σv + ∇ · ( c w ) = f in Ω × (0 , T ) w t + ∇ v = 0 in Ω × (0 , T ) v = 0 on ∂ Ω × (0 , T ) v | t =0 = v 0 , w | t =0 = −∇ u 0 in Ω with q = ( v, w ) t q t + Σ q + ∇ · F ( q ) = S Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  11. Nodal DG FE Formulation Find q h : [0 , T ] × V h → R such that ∀ ψ ∈ V h , ( q h t , ψ )+( Σ q h , ψ )+ a DG ( q h , ψ ) = ( S , ψ ) t ∈ (0 , T ) . • Nodal DG FEM: ( Hesthaven-Warburton, Springer, 2008 ) � � a DG ( q , ψ ) := ( ∇ · F ( q )) · ψ dx K K ∈T h � � ( n · F ( q ) − ( n · F ( q )) ∗ ) · ψ dA − e e ∈E h Here, ( n · F ( q )) ∗ denotes a suitable numerical flux in the unit normal direction n . Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  12. Semi-Discrete Galerkin FE Formulations The discretization in space leads to a system of ODE’s M d 2 U dt 2 ( t ) + M σ d U dt ( t ) + K U ( t ) = R ( t ) , t ∈ (0 , T ) or M d Q dt ( t ) + M σ Q ( t ) + K Q ( t ) = R ( t ) , t ∈ (0 , T ) . The stiffness matrix K and the mass matrix M are sparse. Moreover, the mass matrix M is SPD and (block-)diagonal ⇒ computing M − 1 is cheap ⇒ fully explicit time-stepping! Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  13. Semi-Discrete Galerkin FE Formulations The discretization in space leads to a system of ODE’s M d 2 U dt 2 ( t ) + M σ d U dt ( t ) + K U ( t ) = R ( t ) , t ∈ (0 , T ) or M d Q dt ( t ) + M σ Q ( t ) + K Q ( t ) = R ( t ) , t ∈ (0 , T ) . The stiffness matrix K and the mass matrix M are sparse. Moreover, the mass matrix M is SPD and (block-)diagonal ⇒ computing M − 1 is cheap ⇒ fully explicit time-stepping! adaptivity, small geometric features ⇓ locally refined meshes ⇓ CFL condition for explicit time-stepping ∆ t ≤ C h, h = min T ∈T h h T Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  14. Multirate Time-Stepping for ODEs / Previous Work • Rice, J. Res. Nat. Bureau Stand.-B 1960 • Split Runge-Kutta methods • Gear-Wells, BIT 1984 • Multirate linear multistep methods: “fast-first”, “slow-first” • G¨ unther-Kværnø-Rentrop, BIT 2001 • Multirate partitioned (IMEX) Runge-Kutta methods • Leimkuhler-Reich, JCP 2001 • The reversible averaging (RA) method • Hairer-Lubich-Wanner, Geometric Numerical Integration 2002 • Multiple time-stepping for ODEs • Savcenco-Hundsdorfer-Verwer, BIT, 2007 • Multirate (IMEX) time-stepping strategy for stiff ODEs • A. Kl¨ ockner, PhD thesis, 2010 • Multirate AB k time-stepping (Gear-Wells type) Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  15. Explicit LTS for PDEs / Previous Work • Berger and Oliger, JCP 1984 • AMR method, based on rectangular FD patches (AMROC) • Collino et al., Numer. Math. 2003, JCP 2006 ; Piperno, M2AN 2006 • Sympletic second-order St¨ ormer-Verlet • Dumbser et al., Geophys. J. Int. 2007 ; Int. J. Numer. Model. 2009 • LTS ADER-DG schemes • Constantinescu-Sandu, J. Sc. Comp. 2007, 2009 • Multirate time integration, limited to second order accuracy • Diaz-G., SISC 2009, CMAME 2015 • σ = 0: LTS-LF of arbitrarily high accuracy, multi-level version • G.-Mitkova, JCAM 2010, 2013 • σ ≥ 0: LTS-AB of arbitrarily high accuracy • Hochbruck-Ostermann, BIT 2011 • Exponential multistep methods of Adams type Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  16. RK Based Explicit LTS Advantages of RK methods: • One-step method, no starting procedure • Time adaptivity straightforward • Larger stability regions (but more work per step) • Low storage (LSRK) versions available • Knoth et al., BIT 2009, JCAM 2009 • Multirate RK for advection equations, 3d order • Liu, Li, Hu, JCP 2010 • Non-uniform LDDRK-DG for CFD, linear coupling conditions “...the availability of extrapolation from past values is an advantage for multistep methods over Runge-Kutta methods in the multirate context.” (Gear-Wells, BIT, 1984) Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  17. RK Based Explicit LTS Methods Goal: Derive Runge-Kutta (RK) based explicit LTS methods for d y dt ( t ) = By ( t ) + F ( t ) , t ∈ (0 , T ) . (1) B involves the factor M − 1 . The mass matrix M is (block-)diagonal ⇒ computing M − 1 is cheap ⇒ fully explicit time-stepping! Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  18. RK Based Explicit LTS Methods Goal: Derive Runge-Kutta (RK) based explicit LTS methods for d y dt ( t ) = By ( t ) + F ( t ) , t ∈ (0 , T ) . (1) B involves the factor M − 1 . The mass matrix M is (block-)diagonal ⇒ computing M − 1 is cheap ⇒ fully explicit time-stepping! adaptivity, small geometric features ⇓ locally refined meshes ⇓ CFL condition for explicit time-stepping ∆ t ≤ C h, h = min T ∈T h h T Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

  19. RK-methods and numerical integration y ′ ( t ) = f ( y ( t ) , t )) , y (0) = y 0 0 k 1 = f ( y n , t n ) , c 2 a 21 k 2 = f ( y n + ∆ ta 21 k 1 , t n + c 2 ∆ t ) , c 3 a 31 a 32 . . . . ... . . . . . . . . c s a s 1 . . . a s,s − 1 s − 1 � b 1 . . . b s − 1 b s k s = f ( y n + ∆ t a si k i , t n + c s ∆ t ) , i =1 Butcher-tableau of an explicit s � RK s scheme of order k . y ( t n +1 ) ≈ y n +1 = y n + ∆ t b i k i . i =1 Marcus Grote Universit´ e de Bˆ ale CCN 2016, Nice, 27-29 sept., 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend