ham iltonian form ulation of reduced vlasov maxw ell
play

Ham iltonian form ulation of reduced Vlasov-Maxw ell equations - PowerPoint PPT Presentation

Ham iltonian form ulation of reduced Vlasov-Maxw ell equations Cristel CHANDRE Centre de Physique Thorique CNRS, Marseille, France Contact : chandre@cpt.univ-mrs.fr importance of stability vs instability in devices involving a large


  1. Ham iltonian form ulation of reduced Vlasov-Maxw ell equations Cristel CHANDRE Centre de Physique Théorique – CNRS, Marseille, France Contact : chandre@cpt.univ-mrs.fr

  2. � importance of stability vs instability in devices involving a large number of charged particles interacting with fields: plasma physics (tokamaks), free electron lasers � Here: reduced models of such systems (easier simulation, better understanding of the dynamics) Outline Outline - Hamiltonian description of charges particles and electromagnetic fields - Reduction of Vlasov-Maxwell equations using Lie transforms Alain J. BRIZARD (Saint Michael’s College, Vermont, USA) - Reduced Hamiltonian model for the Free Electron Laser Romain BACHELARD (Synchrotron Soleil, Paris) Michel VITTOT (CPT, Marseille)

  3. Motion of a charged particle in electrom agnetic fields Motion of a charged particle in electrom agnetic fields > > in canonical form 2 ⎛ ⎞ ⎟ e ( ) ⎜ ⎟ − ⎜ p A q , t ⎟ ⎜ ⎟ ⎜ ⎝ ⎠ ∂ ∂ ∂ ∂ c f g f g ( ) ( ) { } = + = ⋅ − ⋅ p q , , q , , H t eV t with f g ∂ ∂ ∂ ∂ 2 q p p q m ⎧ ⎪ ∂ { } H ⎪ � = = − p p , ⎪ H ⎪ ∂ q ⎪ ⎨ equations of motion : ⎪ ∂ { } H ⎪ � = = q q , ⎪ H ⎪ ∂ p ⎪ ⎩ ⎛ ⎞ 1 e ⎟ ⎜ = − ( ) v p A q , ⎟ t ⎜ ⎜ ⎟ ⎝ ⎠ m c > in non-canonical form: physical variables > = x q ⎛ ⎞ ⎛ ⎞ ∂ ∂ ∂ ∂ ⎟ ∂ ∂ ⎟ 1 1 B f g f g e f g ( ) ( ) { } ⎜ ⎜ ⎟ ⎟ = 2 + = ⋅ − ⋅ + ⋅ × v x , , v x , , ⎜ ⎜ H t m eV t with f g ⎟ ⎟ ⎜ ⎜ ⎜∂ ⎟ ⎜∂ ⎟ ∂ ∂ ∂ ∂ 2 x v v x 2 v v ⎝ ⎠ ⎝ ⎠ m m c ⎧ { } ⎪ = = x � x , v gyroscopic bracket ⎪ H ⎪ ⎪ ⎛ ⎞ ⎨ × v B equations of motion : ⎟ e { } ⎜ ⎪ ⎟ � = = + v v , ⎜ E ⎪ H ⎟ ⎜ ⎜ ⎟ ⎪ ⎝ ⎠ m c ⎪ ⎩

  4. Definition: Ham iltonian system Definition: Ham iltonian system - a scalar function H , the Hamiltonian { } - a Poisson bracket F G , with the properties { } { } = − antisymmetric F G , G F , { } { } { } = + Leibnitz law F GK , F G K , G F K , { } { } { } { } { } { } + + = Jacobi identity F G , , K K F , , G G K , , F 0 - equations of motion dF { } = F H , dt - a conserved quantity { } = F H , 0

  5. Eulerian version: case of a density of charged particles Eulerian version: case of a density of charged particles ( ) - density of particles in phase space f x v , , t 1 ( ) ( ) ( ) ( ) ( ) ∑ = δ − δ − example: f x v , , t x x t v v t Klimontovitch distribution i i N i - evolution given by the Vlasov equation ⎛ ⎞ ∂ ∂ f e v f ⎟ ⎜ ⎟ = − ⋅ ∇ − + × ⋅ v f E B ⎜ ⎟ ⎜ ⎟ ⎜ ∂ ∂ t m c v ⎝ ⎠ - Eulerian, not Lagrangian: ∂ d F F ⎡ ⎤ ⎡ ⎤ = = f for any observable F , we have F H , ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ∂ dt t - still a Hamiltonian system ⎛ ⎞ m ⎟ ⎜ ⎡ ⎤ = ∫∫ ⎟ 3 3 2 + Hamiltonian : f d xd v f v eV H ⎜ ⎢ ⎥ ⎟ ⎣ ⎦ ⎜ ⎟ ⎜ 2 ⎝ ⎠ ⎧ ⎫ ⎪ ⎪ δ δ F G ⎪ ⎪ ⎡ ⎤ ∫∫ = 3 3 with , d xd v f , F G ⎨ ⎬ ⎢ ⎥ ⎣ ⎦ ⎪ ⎪ δ δ f f ⎪ ⎪ ⎩ ⎭

  6. Eulerian version: case of a density of charged particles Eulerian version: case of a density of charged particles ( ) ⎡ ⎤ ∫ ρ = 3 - an example: f x e d v f ( x v , ) ⎢ ⎥ ⎣ ⎦ 0 0 ⎧ ⎫ ⎪ ⎪ ∂ρ δρ δ H ⎪ ⎪ ⎡ ⎤ ∫ = ρ = 3 3 , d xd v f , H ⎨ ⎬ ⎢ ⎥ ⎣ ⎦ ⎪ ⎪ ∂ δ δ t f f ⎪ ⎪ ⎩ ⎭ - functional derivatives δ F ( ) ⎡ ⎤ ⎡ ⎤ ∫ + φ 3 3 φ + φ 2 f = f + d xd v O F F ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ δ f δρ δ 1 H ( ) = δ − = 2 + - here: e x x and m v eV 0 δ δ f f 2 ∂ρ = ∂ ⎡ ⎤ ∫ − ⋅ = 3 - therefore: J with J f e d v f v ⎢ ⎥ ⎣ ⎦ ∂ ∂ t x

  7. Vlasov- -Maxw ell equations: self Maxw ell equations: self- -consistent dynam ics consistent dynam ics Vlasov > description of the dynamics of a collisionless plasma (low density) Variables : particle density f ( x , v , t ) , electric field E ( x , t ) , magnetic field B ( x , t ) ⎛ ⎞ ∂ ∂ f e v f ⎟ ⎜ ⎟ = − ⋅ ∇ − + × ⋅ v f E B ⎜ ⎟ ⎜ ⎟ ⎜ ∂ ∂ t m c v ⎝ ⎠ ∂ B = − ∇× E c ∂ t ∂ E = ∇× B − π J c 4 ∂ t ∇ ⋅ E = πρ ∇ ⋅ B = 4 0 where and

  8. Vlasov- -Maxw ell equations... still a Ham iltonian system Maxw ell equations... still a Ham iltonian system Vlasov 2 2 + E B m ⎡ ⎤ = ∫ ∫ ∫ 3 3 2 + 3 E , , B f d xd v f v d x H Hamiltonian : ⎢ ⎥ ⎣ ⎦ π 2 8 ⎧ ⎫ ⎪ ⎪ δ δ F G ⎪ ⎪ ⎡ ⎤ ∫∫ 3 3 = , d xd v f , F G ⎨ ⎬ with ⎢ ⎥ ⎣ ⎦ ⎪ ⎪ δ δ f f ⎪ ⎪ ⎩ ⎭ ⎡ ⎤ π ∂ δ δ δ δ 4 e f F G F G ⎢ ⎥ ∫∫ + 3 3 ⋅ − d xd v ⎢ ⎥ ∂ δ δ δ δ m v E f f E ⎣ ⎦ ⎡ ⎤ δ δ δ δ F G F G ∫ ⎢ ⎥ + π 3 ⋅ ∇× − ∇× ⋅ 4 c d x ⎢ ⎥ δ E δ B δ B δ E ⎣ ⎦ ∂ d F F ⎡ ⎤ ⎡ ⎤ = = F E , , B f F H , Equation of motion for : ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ∂ dt t ∫ 3 B E − d p f Remark: div et div are conserved quantities antisymmetry, Leibnitz, Jacobi Morrison, PLA (1980) Marsden, Weinstein, Physica D (1982)

  9. From m icroscopic to m acroscopic Vlasov- -Maxw ell equations Maxw ell equations From m icroscopic to m acroscopic Vlasov - Elimination (or decoupling) of fast time and small spatial scales for a better understanding of complex plasma phenomena D H - reduced Maxwell equations in terms of and ∇ ⋅ = πρ D 4 R ∂ D = ∇× − π H J c 4 ∂ R t = + π = − π D E 4 P , H B 4 M where ∂ P ρ = ρ + ∇ ⋅ = − ∇× − ∂ P J J c M , R R t reduced polarization density / magnetization current / polarization current density - Can we represent the reduced Vlasov-Maxwell equations as a Hamiltonian system? Hint: use of Lie transforms - Deliverables : Expressions of the polarization P and magnetization M vectors

  10. f , E and B of f , E and B Reduced fields fields as Lie as Lie transform s transform s of Reduced ⎡ ( ) ( ) ( ) ⎤ Given a functional E x , t , B x , t , f x v , , t , we define some new fields as S ⎢ ⎥ ⎣ ⎦ ⎛ ⎞ 1 ⎟ ⎜ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎟ − + + E , E , , E � ⎜ S S S ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎜ ⎣ ⎦ ⎣ ⎦ ⎛ ⎞ ⎛ ⎞ ⎣ ⎦ ⎟ 2 ⎜ D E ⎟ ⎟ ⎟ ⎜ ⎜ ⎜ ⎟ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎟ 1 ⎜ ⎜ ⎟ ⎟ ⎡ ⎤ ⎜ ⎡ ⎤ ⎡ ⎤ ⎟ − ⎜ L ⎜ = = − + + H ⎟ e B ⎟ B S , B S S , , B � ⎟ ⎜ S ⎜ ⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎟ ⎟ ⎣ ⎦ ⎣ ⎦ ⎟ ⎜ ⎣ ⎦ ⎜ ⎜ ⎟ ⎟ 2 ⎟ ⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎟ ⎜ F ⎜ f ⎟ ⎜ ⎝ ⎠ ⎝ ⎠ 1 ⎟ ⎡ ⎤ ⎜ ⎡ ⎤ ⎡ ⎤ ⎟ − ⎢ + + f , f , , f � S S S ⎜ ⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟ ⎝ 2 ⎠ χ Remark: If the variable is only a function of x − L χ then e is only a function of x S − L = The functionals transforms into e , F F S resulting in a new Hamiltonian and a new Poisson bracket...

  11. Polarization, , m agnetization m agnetization, , reduced reduced density density , , etc etc… … Polarization ⎛ ⎞ δ ∂ δ ⎟ 1 e S S ( ) ⎜ ∫ − L ⎟ = − = ∇× − 3 + P e 1 E c d vf � ⎜ S ⎟ ⎜ ⎟ ⎜ π δ ∂ δ 4 B m v f ⎝ ⎠ δ 1 1 ( ) S − L = − = ∇× + M e B c � S π δ 4 E ⎧ ⎪ = + π D E 4 P ⎪ so that ⎨ ⎪ = − π H B 4 M ⎪ ⎩ ⎛ ⎞ ∂ ∂ F ⎟ ⎜ − L L ⎟ ≡ ⎜ Reduced evolution operator e e F S S ⎟ ⎜ ⎟ ⎜ ∂ ∂ t ⎝ t ⎠ ⎡ ⎤ ⎡ ⎤ − L L L = = ⎢ e e ,e , F H F H S S S ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦

  12. Reduced Vlasov Vlasov- -Maxw ell Maxw ell equations equations Reduced ∂ D = ∇× − π c H 4 J ∂ t ∂ H = − ∇× D c ∂ t ∂ ∂ D D ⎡ ⎤ = + − = ∇× − π D , H H c H 4 J ⎢ ⎥ ⎣ ⎦ ∂ ∂ R t t ∂ ∂ ∂ H H M ⎡ ⎤ = + H − = − ∇× D − π + π ∇× P , H H c 4 4 c ⎢ ⎥ ⎣ ⎦ ∂ ∂ ∂ t t t ⎛ ⎞ ∂ ∂ F e v F ⎟ ⎜ ⎟ = − ⋅ ∇ − + × ⋅ Reduced Vlasov equation v F ⎜ D H ⎟ ⎜ ⎟ ⎜ ∂ ∂ t m c v ⎝ ⎠ ⎧ ⎫ ⎪ ⎪ δ π ∂ δ 4 e f S S ⎪ ⎪ = − − ⋅ + F f f , � ⎨ ⎬ ⎪ ⎪ δ ∂ δ f m v E ⎪ ⎪ ⎩ ⎭ guiding center theory / gyrokinetics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend