group actions and cohomology in the calculus of variations
play

Group Actions and Cohomology in the Calculus of Variations J UHA P - PowerPoint PPT Presentation

Group Actions and Cohomology in the Calculus of Variations J UHA P OHJANPELTO Oregon State and Aalto Universities Focused Research Workshop on Exterior Differential Systems and Lie Theory Fields Institute, Toronto, Canada, December 2013 E


  1. Group Actions and Cohomology in the Calculus of Variations J UHA P OHJANPELTO Oregon State and Aalto Universities Focused Research Workshop on Exterior Differential Systems and Lie Theory Fields Institute, Toronto, Canada, December 2013

  2. E XAMPLE : I NTEGRABLE SYSTEMS Potential Kadomtsev-Petviashvili (PKP) equation u tx + 3 2 u x u xx + 1 4 u xxxx + 3 s 2 = ± 1 . 4 s 2 u yy = 0 , Admits an infinite dimensional algebra of distinguished symmetries g PKP involving 5 arbitrary functions of time t . (David, Kamran, Levi, Winternitz, Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra , J. Math. Phys. 27 (1986), 1225–1237.)

  3. E XAMPLE : I NTEGRABLE SYSTEMS Potential Kadomtsev-Petviashvili (PKP) equation u tx + 3 2 u x u xx + 1 4 u xxxx + 3 s 2 = ± 1 . 4 s 2 u yy = 0 , Admits an infinite dimensional algebra of distinguished symmetries g PKP involving 5 arbitrary functions of time t . (David, Kamran, Levi, Winternitz, Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra , J. Math. Phys. 27 (1986), 1225–1237.)

  4. PKP EQUATION The symmetry algebra g PKP is spanned by the vector fields ∂ t + 2 ∂ y + ( 1 3 xf ′ − 2 ∂ x + ( − 1 3 uf ′ + 1 X f = f ∂ 3 yf ′ ∂ 9 s 2 y 2 f ′′ ) ∂ 9 x 2 f ′′ − 4 4 243 y 4 f ′′′′ ) ∂ 27 s 2 xy 2 f ′′′ + ∂ u , Y g = g ∂ ∂ y − 2 3 s 2 yg ′ ∂ ∂ x + ( − 4 9 s 2 xyg ′′ + 8 81 y 3 g ′′′ ) ∂ ∂ u , Z h = h ∂ ∂ x + ( 2 3 xh ′ − 4 9 s 2 y 2 h ′′ ) ∂ ∂ u , W k = yk ∂ U l = l ∂ ∂ u , and ∂ u , where f = f ( t ) , g = g ( t ) , h = h ( t ) , k = k ( t ) and l = l ( t ) are arbitrary smooth functions of t .

  5. PKP EQUATION Locally variational with the Lagrangian L = − 1 2 u t u x − 1 x + 1 xx − 3 4 u 3 8 u 2 8 s 2 u 2 y . But the PKP equation admits no Lagrangian that is invariant under g PKP ! To what extent do these properties characterize the PKP-equation?

  6. PKP EQUATION Locally variational with the Lagrangian L = − 1 2 u t u x − 1 x + 1 xx − 3 4 u 3 8 u 2 8 s 2 u 2 y . But the PKP equation admits no Lagrangian that is invariant under g PKP ! To what extent do these properties characterize the PKP-equation?

  7. E XAMPLE : V ECTOR F IELD T HEORIES One-form A = A b ( x i ) dx b on R m satisfying T a = T a ( x i , A b , A b , i 1 , A b , i 1 i 2 , . . . , A b , i 1 i 2 ··· i k ) = 0 , a = 1 , 2 , . . . , m . S YMMETRIES S 1 : spatial translations x i → x i + a i , ( a i ) ∈ R m . S 2 : Gauge transformations A a ( x i ) → A a ( x i ) + ∂φ ∂ x a ( x i ) , φ ∈ C ∞ ( R m ) . C ONSERVATION LAWS C 1 : There are functions t i j = t i j ( x i , A a , A a , i 1 , A a , i 1 i 2 , . . . , A a , i 1 i 2 ··· i l ) such that, for each j = 1 , 2 , . . . , m , A a , j T a = D i ( t i j ) . C 2 : The divergence of T a vanishes identically, D a T a = 0 .

  8. V ECTOR F IELD T HEORIES T HEOREM (A NDERSON , P.) Suppose that the differential operator T a admits symmetries S 1 , S 2 and conservation laws C 1 , C 2 . Then T a arises from a variational principle, T a = E a ( L ) for some Lagrangian L , if (i) m = 2, and T a is of third order; (ii) m ≥ 3, and T a is of second order; (iii) the functions T a are polynomials of degree at most m in the field variables A a and their derivatives. N ATURAL QUESTION : Can the Lagrangian L be chosen to be invariant under [S1], [S2]?

  9. The goal is to reduce these type of questions into algebraic problems.

  10. V ARIATIONAL B ICOMPLEX Smooth fiber bundle F − − − − → E   � π M Adapted coordinates { ( x 1 , x 2 , . . . , x m , u 1 , u 2 , . . . , u p ) } = { ( x i , u α ) } such that π ( x i , u α ) = ( x i ) .

  11. A local section is a smooth mapping σ : U op ⊂ M → E such that π ◦ σ = id . In adapted coordinates σ ( x 1 , x 2 , . . . , x m ) = ( x 1 , x 2 , . . . , x m , f 1 ( x 1 , x 2 , . . . , x m ) , . . . , f p ( x 1 , x 2 , . . . , x m )) .

  12. I NFINITE JET BUNDLE OF SECTIONS J ∞ ( E ) π ∞ o E π ∞ π M

  13. I NFINITE JET BUNDLE Adapted coordinates = ⇒ locally J ∞ ( E ) ≈ { ( x i , u α , u α x j 1 , u α x j 1 x j 2 , . . . , u α x j 1 x j 2 ··· x jk , . . . ) } . Often write u α x j 1 x j 2 ··· x jk = u α j 1 j 2 ··· j k = u α J , where J = ( j 1 , j 2 , . . . , j k ) , 1 ≤ j l ≤ m , is a multi-index .

  14. C OTANGENT BUNDLE OF J ∞ ( E ) dx 1 , dx 2 , . . . , dx m . Horizontal forms : θ α J = du α J − u α Jk dx k . Contact forms : The space of differential forms Λ ∗ ( J ∞ ( E )) on J ∞ ( E ) splits into a direct sum of spaces of horizontal degree r and vertical (or contact) degree s : � Λ ∗ ( J ∞ ( E )) = Λ r , s ( J ∞ ( E )) . r , s ≥ 0 Here ω ∈ Λ r , s ( J ∞ ( E )) is a finite sum of terms of the form J ) dx k 1 ∧ · · · ∧ dx k r ∧ θ α 1 f ( x i , u α , u α j , . . . , u α L 1 ∧ · · · ∧ θ α s L s .

  15. C OTANGENT BUNDLE OF J ∞ ( E ) dx 1 , dx 2 , . . . , dx m . Horizontal forms : θ α J = du α J − u α Jk dx k . Contact forms : The space of differential forms Λ ∗ ( J ∞ ( E )) on J ∞ ( E ) splits into a direct sum of spaces of horizontal degree r and vertical (or contact) degree s : � Λ ∗ ( J ∞ ( E )) = Λ r , s ( J ∞ ( E )) . r , s ≥ 0 Here ω ∈ Λ r , s ( J ∞ ( E )) is a finite sum of terms of the form J ) dx k 1 ∧ · · · ∧ dx k r ∧ θ α 1 f ( x i , u α , u α j , . . . , u α L 1 ∧ · · · ∧ θ α s L s .

  16. H ORIZONTAL AND V ERTICAL D IFFERENTIALS The horizontal connection generated by the total derivative operators ∂ ∂ ∂ ∂ ∂ x i + u α ∂ u α + u α + u α D i = + · · · i ij 1 ij 1 j 2 ∂ u α ∂ u α j 1 j 1 j 2 is flat = ⇒ The exterior derivative splits as d = d H + d V , where d H : Ω r , s → Ω r + 1 , s , d V : Ω r , s → Ω r , s + 1 .

  17. H ORIZONTAL AND V ERTICAL D IFFERENTIALS The horizontal connection generated by the total derivative operators ∂ ∂ ∂ ∂ ∂ x i + u α ∂ u α + u α + u α D i = + · · · i ij 1 ij 1 j 2 ∂ u α ∂ u α j 1 j 1 j 2 is flat = ⇒ The exterior derivative splits as d = d H + d V , where d H : Ω r , s → Ω r + 1 , s , d V : Ω r , s → Ω r , s + 1 .

  18. H ORIZONTAL AND V ERTICAL D IFFERENTIALS m � d H f ( x i , u α , . . . , u α D j f ( x i , u α , . . . , u α J ) dx j , J ) = j = 1 p � � ∂ f J ) θ β d V f ( x i , u α , . . . , u α ( x i , u α , . . . , u α J ) = K . ∂ u β β = 1 | K |≥ 0 K d 2 = 0 = ⇒ d 2 d 2 H = 0 , V = 0 , d H d V + d V d H = 0 .

  19. H ORIZONTAL AND V ERTICAL D IFFERENTIALS m � d H f ( x i , u α , . . . , u α D j f ( x i , u α , . . . , u α J ) dx j , J ) = j = 1 p � � ∂ f J ) θ β d V f ( x i , u α , . . . , u α ( x i , u α , . . . , u α J ) = K . ∂ u β β = 1 | K |≥ 0 K d 2 = 0 = ⇒ d 2 d 2 H = 0 , V = 0 , d H d V + d V d H = 0 .

  20. d V d V d V d V d H d H d H Λ 0 , 1 Λ 1 , 1 Λ m − 1 , 1 Λ m , 1 0 d V d V d V d V d H d H d H Λ 0 , 0 Λ 1 , 0 Λ m − 1 , 0 Λ m , 0 R π ∗ π ∗ π ∗ π ∗ d d d Λ m Λ 0 Λ 1 Λ m − 1 R M M M M

  21. F UNCTIONAL F ORMS Define � α δ ( i 1 j 1 · · · δ i k ) δ β j k , if | I | = | J | , ∂ I α u β J = 0 , otherwise. α : Λ r , s → Λ r , s − 1 , s ≥ 1, Interior Euler operator F I � | I | + | J | � � F I ( − D ) J ( ∂ IJ α ( ω ) = ω ) . α | I | | J |≥ 0 Integration-by-parts operator I : Λ m , s → Λ m , s , s ≥ 1 , I ( ω ) = 1 s θ α ∧ F α ( ω ) . Spaces of functional s-forms F s = I (Λ m , s ) , s ≥ 1. δ V = I ◦ d V : F s → F s + 1 . Then δ 2 Differentials V = 0.

  22. F UNCTIONAL F ORMS Define � α δ ( i 1 j 1 · · · δ i k ) δ β j k , if | I | = | J | , ∂ I α u β J = 0 , otherwise. α : Λ r , s → Λ r , s − 1 , s ≥ 1, Interior Euler operator F I � | I | + | J | � � F I ( − D ) J ( ∂ IJ α ( ω ) = ω ) . α | I | | J |≥ 0 Integration-by-parts operator I : Λ m , s → Λ m , s , s ≥ 1 , I ( ω ) = 1 s θ α ∧ F α ( ω ) . Spaces of functional s-forms F s = I (Λ m , s ) , s ≥ 1. δ V = I ◦ d V : F s → F s + 1 . Then δ 2 Differentials V = 0.

  23. F REE V ARIATIONAL B ICOMPLEX d V d V d V d V δ V d H d H d H I Λ 0 , 2 Λ 1 , 2 Λ m − 1 , 2 Λ m , 2 F 2 0 d V d V d V d V δ V d H d H d H I 0 Λ 0 , 1 Λ 1 , 1 Λ m − 1 , 1 Λ m , 1 F 1 d V d V d V d V E d H d H d H Λ 0 , 0 Λ 1 , 0 Λ m − 1 , 0 Λ m , 0 R π ∗ π ∗ π ∗ π ∗ d d d Λ 0 Λ 1 Λ m − 1 Λ m R M M M M

  24. E ULER -L AGRANGE C OMPLEX ◮ Columns are locally exact ◮ Interior rows are globally exact! Horizontal homotopy operator � � H ( ω ) = 1 θ α ∧ F Ij h r , s c I D I α ( D j ω )] , s ≥ 1 , s | I |≥ 0 | I | + 1 where c I = n − r + | I | + 1 .

  25. E ULER -L AGRANGE C OMPLEX The edge complex d H d H → Λ 0 , 0 → Λ 1 , 0 R − − − − − − − − − − − − → · · · d H d H δ V δ V δ V → Λ m − 1 , 0 Λ m , 0 F 1 F 2 − − − − − − − − → − − − − → − − − − → − − − − → · · · H Div E is called the Euler-Lagrange complex E ∗ ( J ∞ ( E )) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend